Suppr超能文献

一种用于实验性和观察性研究中两个样本位置问题的简单而强大的双变量检验。

A simple powerful bivariate test for two sample location problems in experimental and observational studies.

作者信息

Tabesh Hamed, Ayatollahi S M T, Towhidi Mina

机构信息

Department of Biostatistics, Shiraz University of Medical Sciences, Shiraz, Iran.

出版信息

Theor Biol Med Model. 2010 May 7;7:13. doi: 10.1186/1742-4682-7-13.

Abstract

BACKGROUND

In many areas of medical research, a bivariate analysis is desirable because it simultaneously tests two response variables that are of equal interest and importance in two populations. Several parametric and nonparametric bivariate procedures are available for the location problem but each of them requires a series of stringent assumptions such as specific distribution, affine-invariance or elliptical symmetry. The aim of this study is to propose a powerful test statistic that requires none of the aforementioned assumptions. We have reduced the bivariate problem to the univariate problem of sum or subtraction of measurements. A simple bivariate test for the difference in location between two populations is proposed.

METHOD

In this study the proposed test is compared with Hotelling's T(2) test, two sample Rank test, Cramer test for multivariate two sample problem and Mathur's test using Monte Carlo simulation techniques. The power study shows that the proposed test performs better than any of its competitors for most of the populations considered and is equivalent to the Rank test in specific distributions.

CONCLUSIONS

Using simulation studies, we show that the proposed test will perform much better under different conditions of underlying population distribution such as normality or non-normality, skewed or symmetric, medium tailed or heavy tailed. The test is therefore recommended for practical applications because it is more powerful than any of the alternatives compared in this paper for almost all the shifts in location and in any direction.

摘要

背景

在医学研究的许多领域,双变量分析是可取的,因为它同时检验两个在两个总体中具有同等兴趣和重要性的响应变量。对于位置问题,有几种参数和非参数双变量方法可用,但每种方法都需要一系列严格的假设,如特定分布、仿射不变性或椭圆对称性。本研究的目的是提出一种强大的检验统计量,它不需要上述任何假设。我们已将双变量问题简化为测量值相加或相减的单变量问题。提出了一种用于检验两个总体之间位置差异的简单双变量检验。

方法

在本研究中,使用蒙特卡罗模拟技术将所提出的检验与霍特林T(2)检验、两样本秩检验、多变量两样本问题的克莱默检验和马图尔检验进行比较。功效研究表明,对于所考虑的大多数总体,所提出的检验比其任何竞争对手的表现都更好,并且在特定分布中与秩检验等效。

结论

通过模拟研究,我们表明所提出的检验在基础总体分布的不同条件下,如正态或非正态、偏态或对称、中尾或重尾,都将表现得更好。因此,该检验推荐用于实际应用,因为对于几乎所有的位置偏移和任何方向,它都比本文中比较的任何替代方法更强大。

相似文献

3
Rank and Normal Scores Alternatives to Hotelling's T(2).
Multivariate Behav Res. 1986 Apr 1;21(2):169-86. doi: 10.1207/s15327906mbr2102_2.
6
A new efficient statistical test for detecting variability in the gene expression data.
Stat Methods Med Res. 2008 Aug;17(4):405-19. doi: 10.1177/0962280206078643. Epub 2007 Aug 14.
7
Analysis of small sample size studies using nonparametric bootstrap test with pooled resampling method.
Stat Med. 2017 Jun 30;36(14):2187-2205. doi: 10.1002/sim.7263. Epub 2017 Mar 9.
8
Location tests for biomarker studies: a comparison using simulations for the two-sample case.
Methods Inf Med. 2013;52(4):351-9. doi: 10.3414/ME12-02-0014. Epub 2013 Jul 23.
9
Distribution-free simultaneous tests for location-scale and Lehmann alternative in two-sample problem.
Biom J. 2020 Jan;62(1):99-123. doi: 10.1002/bimj.201900057. Epub 2019 Oct 20.
10
A density based empirical likelihood approach for testing bivariate normality.
J Stat Comput Simul. 2018;88(13):2540-2560. doi: 10.1080/00949655.2018.1476516. Epub 2018 May 25.

引用本文的文献

1
Prevalence and trend of overweight and obesity among schoolchildren in Ahvaz, Southwest of Iran.
Glob J Health Sci. 2013 Nov 26;6(2):35-41. doi: 10.5539/gjhs.v6n2p35.

本文引用的文献

2
Responses to cotton dust.
Arch Environ Health. 1975 May;30(5):222-9. doi: 10.1080/00039896.1975.10666685.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验