Genomics Research Centre, Griffith Institute for Health & Medical Research, Griffith University, Parklands Drive, Southport, Queensland, Australia.
BMC Cancer. 2010 May 12;10:195. doi: 10.1186/1471-2407-10-195.
Loss of heterozygosity (LOH) is an important marker for one of the 'two-hits' required for tumor suppressor gene inactivation. Traditional methods for mapping LOH regions require the comparison of both tumor and patient-matched normal DNA samples. However, for many archival samples, patient-matched normal DNA is not available leading to the under-utilization of this important resource in LOH studies. Here we describe a new method for LOH analysis that relies on the genome-wide comparison of heterozygosity of single nucleotide polymorphisms (SNPs) between cohorts of cases and un-matched healthy control samples. Regions of LOH are defined by consistent decreases in heterozygosity across a genetic region in the case cohort compared to the control cohort.
DNA was collected from 20 Follicular Lymphoma (FL) tumor samples, 20 Diffuse Large B-cell Lymphoma (DLBCL) tumor samples, neoplastic B-cells of 10 B-cell Chronic Lymphocytic Leukemia (B-CLL) patients and Buccal cell samples matched to 4 of these B-CLL patients. The cohort heterozygosity comparison method was developed and validated using LOH derived in a small cohort of B-CLL by traditional comparisons of tumor and normal DNA samples, and compared to the only alternative method for LOH analysis without patient matched controls. LOH candidate regions were then generated for enlarged cohorts of B-CLL, FL and DLBCL samples using our cohort heterozygosity comparison method in order to evaluate potential LOH candidate regions in these non-Hodgkin's lymphoma tumor subtypes.
Using a small cohort of B-CLL samples with patient-matched normal DNA we have validated the utility of this method and shown that it displays more accuracy and sensitivity in detecting LOH candidate regions compared to the only alternative method, the Hidden Markov Model (HMM) method. Subsequently, using B-CLL, FL and DLBCL tumor samples we have utilised cohort heterozygosity comparisons to localise LOH candidate regions in these subtypes of non-Hodgkin's lymphoma. Detected LOH regions included both previously described regions of LOH as well as novel genomic candidate regions.
We have proven the efficacy of the use of cohort heterozygosity comparisons for genome-wide mapping of LOH and shown it to be in many ways superior to the HMM method. Additionally, the use of this method to analyse SNP microarray data from 3 common forms of non-Hodgkin's lymphoma yielded interesting tumor suppressor gene candidates, including the ETV3 gene that was highlighted in both B-CLL and FL.
杂合性丢失(LOH)是肿瘤抑制基因失活所需的“两个打击”之一的重要标志物。用于定位 LOH 区域的传统方法需要比较肿瘤和患者匹配的正常 DNA 样本。然而,对于许多存档样本,患者匹配的正常 DNA 不可用,导致在 LOH 研究中未充分利用这一重要资源。在这里,我们描述了一种新的 LOH 分析方法,该方法依赖于对病例队列和未匹配的健康对照样本中单个核苷酸多态性(SNP)杂合性的全基因组比较。LOH 区域是通过在病例队列中与对照队列相比,在遗传区域内一致降低杂合性来定义的。
从 20 例滤泡性淋巴瘤(FL)肿瘤样本、20 例弥漫性大 B 细胞淋巴瘤(DLBCL)肿瘤样本、10 例 B 细胞慢性淋巴细胞白血病(B-CLL)患者的肿瘤 B 细胞和与其中 4 例 B-CLL 患者相匹配的口腔细胞样本中收集 DNA。使用传统的肿瘤和正常 DNA 样本比较从小 B-CLL 患者亚组中获得的 LOH 数据,对病例队列杂合性比较方法进行了开发和验证,并与没有患者匹配对照的唯一替代 LOH 分析方法进行了比较。然后,使用我们的病例队列杂合性比较方法为扩大的 B-CLL、FL 和 DLBCL 样本生成 LOH 候选区域,以评估这些非霍奇金淋巴瘤肿瘤亚型中的潜在 LOH 候选区域。
使用具有患者匹配正常 DNA 的小 B-CLL 样本队列,我们验证了该方法的有效性,并表明与唯一的替代方法——隐马尔可夫模型(HMM)方法相比,该方法在检测 LOH 候选区域方面具有更高的准确性和灵敏度。随后,我们使用 B-CLL、FL 和 DLBCL 肿瘤样本,利用病例队列杂合性比较定位了这些非霍奇金淋巴瘤亚型中的 LOH 候选区域。检测到的 LOH 区域包括先前描述的 LOH 区域和新的基因组候选区域。
我们已经证明了使用病例队列杂合性比较进行全基因组 LOH 定位的有效性,并表明它在许多方面优于 HMM 方法。此外,使用这种方法分析 3 种常见非霍奇金淋巴瘤的 SNP 微阵列数据产生了有趣的肿瘤抑制基因候选物,包括在 B-CLL 和 FL 中均突出显示的 ETV3 基因。