Suppr超能文献

应用 PARAFAC2 和主成分分析对色谱数据进行综合分析。

Comprehensive analysis of chromatographic data by using PARAFAC2 and principal components analysis.

机构信息

Department of Food Science, Quality and Technology, Faculty of Life Sciences, University of Copenhagen, Frederiksberg C, Denmark.

出版信息

J Chromatogr A. 2010 Jun 25;1217(26):4422-9. doi: 10.1016/j.chroma.2010.04.042. Epub 2010 Apr 22.

Abstract

The most straightforward method to analyze an obtained GC-MS dataset is to integrate those peaks that can be identified by their MS profile and to perform a Principal Component Analysis (PCA). This procedure has some important drawbacks, like baseline drifts being scarcely considered or the fact that integration boundaries are not always well defined (long tails, co-eluted peaks, etc.). To improve the methodology, and therefore, the chromatographic data analysis, this work proposes the modeling of the raw dataset by using PARAFAC2 algorithm in selected areas of the GC profile and using the obtained well-resolved chromatographic profiles to develop a further PCA model. With this working method, not only the problems arising from instrumental artifacts are overcome, but also the detection of new analytes is achieved as well as better understanding of the studied dataset is obtained. As a positive consequence of using the proposed working method human time and work are saved. To exemplify this methodology the aroma profile of 36 apples being ripened were studied. The benefits of the proposed methodology (PARAFAC2+PCA) are shown in a practitioner perspective, being able to extrapolate the conclusions obtained here to other hyphenated chromatographic datasets.

摘要

最直接的方法来分析一个获得的 GC-MS 数据集是整合那些可以通过他们的 MS 图谱来识别的峰,并进行主成分分析 (PCA)。 这个过程有一些重要的缺点,如基线漂移很少被考虑到,或者积分边界并不总是定义得很好(长尾、共洗脱峰等)。 为了改进方法,从而改进色谱数据分析,这项工作提出了在 GC 轮廓的选定区域使用 PARAFAC2 算法对原始数据集进行建模,并使用获得的分辨率良好的色谱轮廓来开发进一步的 PCA 模型。 采用这种工作方法,不仅克服了仪器误差引起的问题,而且还能够检测到新的分析物,并更好地理解所研究的数据集。 作为使用所提出的工作方法的积极结果,节省了人力和时间。 为了举例说明这种方法,研究了 36 个正在成熟的苹果的香气轮廓。 所提出的方法(PARAFAC2+PCA)的优点从实践的角度来看是显而易见的,能够将这里得到的结论推断到其他的联用法色谱数据集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验