Suppr超能文献

基于新型 RBF 网络的稳定建模控制方法。

Stable modeling based control methods using a new RBF network.

机构信息

Ege University, Electrical and Electronics Engineering, Bornova, Izmir, Turkey.

出版信息

ISA Trans. 2010 Oct;49(4):510-8. doi: 10.1016/j.isatra.2010.04.005. Epub 2010 May 14.

Abstract

This paper presents a novel model with radial basis functions (RBFs), which is applied successively for online stable identification and control of nonlinear discrete-time systems. First, the proposed model is utilized for direct inverse modeling of the plant to generate the control input where it is assumed that inverse plant dynamics exist. Second, it is employed for system identification to generate a sliding-mode control input. Finally, the network is employed to tune PID (proportional + integrative + derivative) controller parameters automatically. The adaptive learning rate (ALR), which is employed in the gradient descent (GD) method, provides the global convergence of the modeling errors. Using the Lyapunov stability approach, the boundedness of the tracking errors and the system parameters are shown both theoretically and in real time. To show the superiority of the new model with RBFs, its tracking results are compared with the results of a conventional sigmoidal multi-layer perceptron (MLP) neural network and the new model with sigmoid activation functions. To see the real-time capability of the new model, the proposed network is employed for online identification and control of a cascaded parallel two-tank liquid-level system. Even though there exist large disturbances, the proposed model with RBFs generates a suitable control input to track the reference signal better than other methods in both simulations and real time.

摘要

本文提出了一种基于径向基函数 (RBF) 的新型模型,该模型成功应用于非线性离散时间系统的在线稳定辨识和控制。首先,利用所提出的模型对被控对象进行直接逆模建模,生成控制输入,假设逆对象动态存在。其次,将其应用于系统辨识以生成滑模控制输入。最后,网络用于自动调整 PID(比例+积分+微分)控制器参数。在梯度下降 (GD) 方法中使用的自适应学习率 (ALR) 保证了建模误差的全局收敛性。使用 Lyapunov 稳定性方法,从理论和实时两个方面证明了跟踪误差和系统参数的有界性。为了展示 RBF 新型模型的优越性,将其跟踪结果与传统的 Sigmoid 多层感知器 (MLP) 神经网络和具有 Sigmoid 激活函数的新型模型的结果进行了比较。为了展示新型模型的实时能力,将所提出的网络用于级联并行双容水箱液位系统的在线辨识和控制。即使存在较大的干扰,新型 RBF 模型生成的控制输入也能更好地跟踪参考信号,优于其他方法,无论是在仿真还是实时中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验