Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
Mol Cell. 2010 May 14;38(3):383-92. doi: 10.1016/j.molcel.2010.02.034.
Accurate chromosome segregation requires carefully regulated interactions between kinetochores and microtubules, but how plasticity is achieved to correct diverse attachment defects remains unclear. Here we demonstrate that Aurora B kinase phosphorylates three spatially distinct targets within the conserved outer kinetochore KNL1/Mis12 complex/Ndc80 complex (KMN) network, the key player in kinetochore-microtubule attachments. The combinatorial phosphorylation of the KMN network generates graded levels of microtubule-binding activity, with full phosphorylation severely compromising microtubule binding. Altering the phosphorylation state of each protein causes corresponding chromosome segregation defects. Importantly, the spatial distribution of these targets along the kinetochore axis leads to their differential phosphorylation in response to changes in tension and attachment state. In total, rather than generating exclusively binary changes in microtubule binding, our results suggest a mechanism for the tension-dependent fine-tuning of kinetochore-microtubule interactions.
精确的染色体分离需要动粒和微管之间精心调控的相互作用,但如何实现可塑性以纠正不同的附着缺陷尚不清楚。在这里,我们证明 Aurora B 激酶在保守的外动粒 KNL1/Mis12 复合物/Ndc80 复合物 (KMN) 网络内的三个空间上不同的靶标上磷酸化,KMN 网络是动粒-微管附着的关键。KMN 网络的组合磷酸化产生了不同程度的微管结合活性,完全磷酸化严重影响微管结合。改变每个蛋白质的磷酸化状态会导致相应的染色体分离缺陷。重要的是,这些靶点在动粒轴上的空间分布导致它们根据张力和附着状态的变化而进行差异磷酸化。总的来说,我们的结果表明,与微管结合的唯一二进制变化不同,对于动粒-微管相互作用的张力依赖的微调,存在一种机制。