CSIRO Sustainable Ecosystems, Tropical Ecosystems Research Centre, PMB 44, Winnellie, Northern Territory 0822, Australia.
Tree Physiol. 2010 Sep;30(9):1192-208. doi: 10.1093/treephys/tpq035. Epub 2010 May 14.
Productivity of tree plantations is a function of the supply, capture and efficiency of use of resources, as outlined in the Production Ecology Equation. Species interactions in mixed-species stands can influence each of these variables. The importance of resource-use efficiency in determining forest productivity has been clearly demonstrated in monocultures; however, substantial knowledge gaps remain for mixtures. This review examines how the physiology and morphology of a given species can vary depending on whether it grows in a mixture or monoculture. We outline how physiological and morphological shifts within species, resulting from interactions in mixtures, may influence the three variables of the Production Ecology Equation, with an emphasis on nutrient resources [nitrogen (N) and phosphorus (P)]. These include (i) resource availability, including soil nutrient mineralization, N₂ fixation and litter decomposition; (ii) proportion of resources captured, resulting from shifts in spatial, temporal and chemical patterns of root dynamics; (iii) resource-use efficiency. We found that more than 50% of mixed-species studies report a shift to greater above-ground nutrient content of species grown in mixtures compared to monocultures, indicating an increase in the proportion of resources captured from a site. Secondly, a meta-analysis showed that foliar N concentrations significantly increased for a given species in a mixture containing N₂-fixing species, compared to a monoculture, suggesting higher rates of photosynthesis and greater resource-use efficiency. Significant shifts in N- and P-use efficiencies of a given species, when grown in a mixture compared to a monoculture, occurred in over 65% of studies where resource-use efficiency could be calculated. Such shifts can result from changes in canopy photosynthetic capacities, changes in carbon allocation or changes to foliar nutrient residence times of species in a mixture. We recommend that future research focus on individual species' changes, particularly with respect to resource-use efficiency (including nutrients, water and light), when trees are grown in mixtures compared to monocultures. A better understanding of processes responsible for changes to tree productivity in mixed-species tree plantations can improve species, and within-species, selection so that the long-term outcome of mixtures is more predictable.
人工林的生产力是资源供应、捕获和利用效率的函数,如生产生态学方程所述。混交林中的种间相互作用会影响这些变量。资源利用效率在确定森林生产力方面的重要性在单作中已得到明确证明;然而,混合物仍存在大量知识空白。本综述考察了给定物种的生理学和形态学如何根据其在混合物或单作中的生长而变化。我们概述了种内的生理学和形态学变化如何通过混合物中的相互作用影响生产生态学方程的三个变量,重点是营养资源[氮 (N) 和磷 (P)]。这些变化包括:(i) 资源可用性,包括土壤养分矿化、N₂固定和凋落物分解;(ii) 由于根动态的空间、时间和化学模式变化而导致的资源捕获比例;(iii) 资源利用效率。我们发现,超过 50%的混交种研究报告称,与单作相比,种在混交中生长的地上养分含量增加,表明从一个地点捕获的资源比例增加。其次,荟萃分析表明,与单作相比,含有固氮物种的混合物中特定物种的叶片 N 浓度显著增加,表明光合作用速率更高,资源利用效率更高。与单作相比,在混合物中生长的特定物种的 N 和 P 利用效率显著变化,在能够计算资源利用效率的超过 65%的研究中都发生了这种变化。这种变化可能是由于冠层光合能力的变化、碳分配的变化或物种叶片养分滞留时间的变化引起的。我们建议未来的研究重点关注特定物种的变化,特别是与资源利用效率(包括养分、水和光)有关的变化,当树木在混交林中生长时。更好地了解导致混交人工林树木生产力变化的过程可以提高物种和种内选择,从而使混合物的长期结果更具可预测性。