Suppr超能文献

膜-水界面的分子识别:通过膜外核碱基配对控制完整肽螺旋。

Molecular recognition at the membrane-water interface: controlling integral peptide helices by off-membrane nucleobase pairing.

机构信息

Institute for Organic and Biomolecular Chemistry, Georg-August-University Göttingen, 37077 Göttingen, Germany.

出版信息

J Am Chem Soc. 2010 Jun 16;132(23):8020-8. doi: 10.1021/ja1006349.

Abstract

The aggregation and organization of membrane proteins and transmembrane peptides is related to the interacting molecular species itself and strongly depends on the lipid environment. Because of the complexity and dynamics of these interactions, they are often hardly traceable and nearly impossible to predict. For this reason, peptide model systems are a valuable tool in studying membrane associated processes since they are synthetically accessible and can be readily modified. To control and study the aggregation of peptide transmembrane domains (TMDs) the interacting interfaces of the TMDs themselves can be altered. A second less extensively studied approach targets the TMD assembly by using interaction and recognition of domains at the membrane outside as frequently found in the membrane protein interplay and protein assembly. In the present study, double helical transmembrane domains were designed and synthesized on the basis of a recently reported d,l-alternating peptide pore motif derived from gramicidin A. The highly hydrophobic and aromatic transmembrane peptide was covalently functionalized with a short peptide nucleic acid (PNA) used as specific outer-membrane recognition unit. The PNA sequences were chosen with high polarity to ensure localization within the aqueous phase. To estimate the impact of the membrane adjacent recognition on the TMD assembly by Förster resonance energy transfer (FRET), fluorescence probes were covalently attached to the side chains of the membrane spanning peptide helices. Dimerization of the TMD-peptide/PNA conjugates within unilamellar lipid vesicles was observed. The dimer/monomer ratio of TMDs can be controlled by temperature variation.

摘要

膜蛋白和跨膜肽的聚集和组织与相互作用的分子种类本身有关,并强烈依赖于脂质环境。由于这些相互作用的复杂性和动态性,它们通常很难追踪,几乎不可能预测。出于这个原因,肽模型系统是研究与膜相关过程的有价值的工具,因为它们是可合成的并且可以很容易地进行修饰。为了控制和研究肽跨膜结构域 (TMD) 的聚集,可以改变 TMD 本身的相互作用界面。第二种研究方法研究得较少,它的目标是通过使用膜外部的结构域相互作用和识别来组装 TMD,这种方法在膜蛋白相互作用和蛋白质组装中经常发现。在本研究中,基于最近报道的源自短杆菌肽 A 的 d,l-交替肽孔基序,设计并合成了双螺旋跨膜结构域。这种高度疏水性和芳香性的跨膜肽与短肽核酸 (PNA) 共价功能化,PNA 用作特定的外膜识别单元。选择具有高极性的 PNA 序列以确保在水相中定位。为了通过Förster 共振能量转移 (FRET) 估计膜相邻识别对 TMD 组装的影响,荧光探针被共价连接到跨膜肽螺旋的侧链上。在单层脂质囊泡中观察到 TMD-肽/PNA 缀合物的二聚化。TMD 的二聚体/单体比可以通过温度变化来控制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验