Department of Hospital Pharmacy (Clinical Pharmacology Unit), Erasmus University Medical Center, Rotterdam, the Netherlands.
Clin Pharmacokinet. 2010 Jun;49(6):407-19. doi: 10.2165/11319970-000000000-00000.
Midazolam is used to sedate children during extracorporeal membrane oxygenation (ECMO). Pharmacokinetic changes are expected because of extracorporeal circulation and maturation. We present a population pharmacokinetic model for midazolam and its major metabolites in neonates during venoarterial ECMO.
We studied 20 neonates on venoarterial ECMO, with a median postnatal age of 0.79 (range 0.17-5.8) days and a bodyweight of 3.0 (range 2.7-3.9) kg at the onset of ECMO. The median ECMO duration was 124 (range 70-275) hours. Serum concentrations were measured at the initiation and discontinuation of the midazolam infusion (100-300 microg/kg/h). Analysis of concentrations of midazolam, 1-hydroxymidazolam and its glucuronide were performed using nonlinear mixed-effects modelling. A two-compartment model for midazolam and a one-compartment model for the metabolites 1-hydroxymidazolam and hydroxymidazolam glucuronide adequately described the data, with allometric scaling of all parameters.
Following the start of ECMO, the volume of distribution of midazolam increased from 4.29 to 14.6 L/3 kg, with an elimination half-life of 1.85 hours. The median midazolam and 1-hydroxymidazolam clearance values increased 3-fold within the first 5 days (up to 1.38 and 5.31 L/h/3 kg, respectively), whereas hydroxymidazolam glucuronide clearance remained constant at 0.18 L/h/3 kg. Interpatient variability estimates of midazolam, 1-hydroxymidazolam and hydroxymidazolam glucuronide clearance and midazolam and hydroxymidazolam glucuronide volumes of distribution varied between 87% and 129%. Concomitant inotropic infusion increased hydroxymidazolam glucuronide clearance by 23%.
After allometric scaling, clearance of midazolam and 1-hydroxymidazolam increases as a result of maturation or recovery from critical illness. In ECMO patients weighing 2.7-3.9 kg, continuously infused midazolam doses of 300 microg/kg/h for 6 hours and 150 microg/kg/h thereafter provide adequate serum concentrations for sedation. The dose must be increased substantially after 5-7 days. Hydroxymidazolam glucuronide accumulates during ECMO, providing an increased proportion of the overall effect, up to 34% after 7 days. Large unexplained interpatient variability warrants careful titration of sedation and adverse effects.
咪达唑仑用于体外膜肺氧合(ECMO)期间镇静儿童。由于体外循环和成熟,预计会发生药代动力学变化。我们提出了一种咪达唑仑及其主要代谢物在新生儿静脉动脉 ECMO 期间的群体药代动力学模型。
我们研究了 20 名接受静脉动脉 ECMO 的新生儿,中位出生后年龄为 0.79 天(范围为 0.17-5.8 天),起始 ECMO 时体重为 3.0 千克(范围为 2.7-3.9 千克)。中位 ECMO 持续时间为 124 小时(范围为 70-275 小时)。在咪达唑仑输注开始和停止时测量血清浓度(100-300 µg/kg/h)。使用非线性混合效应模型分析咪达唑仑、1-羟咪达唑仑及其葡萄糖醛酸的浓度。咪达唑仑的两室模型和代谢物 1-羟咪达唑仑和羟咪达唑仑葡萄糖醛酸的一室模型能够很好地描述数据,所有参数均进行了体表面积标度。
在 ECMO 开始后,咪达唑仑的分布容积从 4.29 增加到 14.6 L/3 kg,消除半衰期为 1.85 小时。咪达唑仑和 1-羟咪达唑仑清除率在最初 5 天内增加了 3 倍(分别达到 1.38 和 5.31 L/h/3 kg),而羟咪达唑仑葡萄糖醛酸清除率保持在 0.18 L/h/3 kg 不变。咪达唑仑、1-羟咪达唑仑和羟咪达唑仑葡萄糖醛酸清除率以及咪达唑仑和羟咪达唑仑葡萄糖醛酸分布容积的患者间变异性估计值在 87%至 129%之间。同时给予正性肌力输注可使羟咪达唑仑葡萄糖醛酸清除率增加 23%。
经过体表面积标度后,咪达唑仑和 1-羟咪达唑仑的清除率会因成熟或从危重病中恢复而增加。在体重为 2.7-3.9 千克的 ECMO 患者中,6 小时内持续输注 300 µg/kg/h 的咪达唑仑剂量,之后输注 150 µg/kg/h 可提供足够的镇静血清浓度。5-7 天后必须大幅增加剂量。在 ECMO 期间,羟咪达唑仑葡萄糖醛酸积累,增加了总体效应的比例,7 天后达到 34%。较大的未解释的患者间变异性需要仔细滴定镇静和不良反应。