Nisoli Cristiano, Gabor Nathaniel M, Lammert Paul E, Maynard J D, Crespi Vincent H
Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Apr;81(4 Pt 2):046107. doi: 10.1103/PhysRevE.81.046107. Epub 2010 Apr 15.
The appearance of mathematical regularities in the disposition of leaves on a stem, scales on a pine-cone, and spines on a cactus has puzzled scholars for millennia; similar so-called phyllotactic patterns are seen in self-organized growth, polypeptides, convection, magnetic flux lattices and ion beams. Levitov showed that a cylindrical lattice of repulsive particles can reproduce phyllotaxis under the (unproved) assumption that minimum of energy would be achieved by two-dimensional Bravais lattices. Here we provide experimental and numerical evidence that the Phyllotactic lattice is actually a ground state. When mechanically annealed, our experimental "magnetic cactus" precisely reproduces botanical phyllotaxis, along with domain boundaries (called transitions in Botany) between different phyllotactic patterns. We employ a structural genetic algorithm to explore the more general axially unconstrained case, which reveals multijugate (multiple spirals) as well as monojugate (single-spiral) phyllotaxis.
茎上叶子的排列、松果上鳞片的分布以及仙人掌上刺的布局呈现出的数学规律,数千年来一直令学者们感到困惑;在自组织生长、多肽、对流、磁通量晶格和离子束中也能看到类似的所谓叶序模式。列维托夫表明,在(未经证实的)假设二维布拉维晶格能实现能量最小化的情况下,排斥粒子的圆柱晶格可以重现叶序。在此,我们提供实验和数值证据表明叶序晶格实际上是一种基态。当进行机械退火时,我们的实验性“磁性仙人掌”精确地重现了植物叶序,以及不同叶序模式之间的畴界(在植物学中称为过渡)。我们采用结构遗传算法来探索更一般的轴向无约束情况,这揭示了多共轭(多个螺旋)以及单共轭(单个螺旋)叶序。