Mitsui Takahito, Aizawa Yoji
Department of Applied Physics, Waseda University, Tokyo 169-8555, Japan.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Apr;81(4 Pt 2):046210. doi: 10.1103/PhysRevE.81.046210. Epub 2010 Apr 21.
Whether strange nonchaotic attractors (SNAs) can typically arise in non-skew-product maps has been a crucial question for more than two decades. Recently, it was shown that SNAs arise in a particular non-skew-product map related to quasiperiodically driven continuous dynamical systems [R. Badard, Chaos, Solitons Fractals 28, 1327 (2006); Chaos 18, 023127 (2008)]. In the present paper, we derive Badard's non-skew-product map from a periodically driven continuous dynamical system with spatially quasiperiodic potential and investigate onset mechanisms of SNAs in the map. In particular, we focus on a transition route to intermittent SNAs, where SNAs appear after pair annihilations of stable and unstable fixed points located on a ring-shaped invariant curve. Then the mean residence time and rotation numbers have a logarithmic singularity. Finally, we discuss the existence of SNAs in a special class of non-skew-product maps.
二十多年来,非斜积映射中是否通常会出现奇异非混沌吸引子(SNA)一直是一个关键问题。最近,有研究表明,SNA出现在与准周期驱动连续动力系统相关的特定非斜积映射中[R. 巴达尔,《混沌、孤子与分形》28, 1327 (2006); 《混沌》18, 023127 (2008)]。在本文中,我们从具有空间准周期势的周期驱动连续动力系统推导出巴达尔的非斜积映射,并研究该映射中SNA的产生机制。特别地,我们关注通向间歇性SNA的转变路径,在该路径中,SNA出现在位于环形不变曲线上的稳定和不稳定不动点对湮灭之后。然后,平均驻留时间和旋转数具有对数奇点。最后,我们讨论一类特殊非斜积映射中SNA的存在性。