Shim Jae Wan, Gatignol Renée
Nano Science Research Division, Korea Institute of Science and Technology, 136-791 Seoul, Republic of Korea.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Apr;81(4 Pt 2):046703. doi: 10.1103/PhysRevE.81.046703. Epub 2010 Apr 19.
We show that the heat exchange between fluid particles and boundary walls can be achieved by controlling the velocity change rate following the particles' collision with a wall in discrete kinetic theory, such as the lattice-gas cellular automata and the lattice Boltzmann method. We derive a relation between the velocity change rate and temperature so that we can control the velocity change rate according to a given temperature boundary condition. This relation enables us to deal with the thermal boundary whose temperature varies along a wall in contrast to the previous works of the lattice-gas cellular automata. In addition, we present simulation results to compare our method to the existing and give an example in a microchannel with a high temperature gradient boundary condition by the lattice-gas cellular automata.
我们表明,在离散动力学理论中,例如晶格气元胞自动机和晶格玻尔兹曼方法,通过控制粒子与壁碰撞后的速度变化率,可以实现流体粒子与边界壁之间的热交换。我们推导了速度变化率与温度之间的关系,以便能够根据给定的温度边界条件控制速度变化率。与晶格气元胞自动机以前的工作相比,这种关系使我们能够处理温度沿壁变化的热边界。此外,我们给出模拟结果,将我们的方法与现有方法进行比较,并通过晶格气元胞自动机给出在具有高温梯度边界条件的微通道中的一个示例。