Department of Physics and Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA.
Phys Rev Lett. 2010 Apr 2;104(13):136402. doi: 10.1103/PhysRevLett.104.136402. Epub 2010 Mar 30.
We present temperature-dependent x-ray diffraction and temperature- and field-dependent Raman scattering studies of single-crystal Mn3O4, which reveal the magnetostructural phases that evolve in the spinels due to the interplay between strong spin-orbital coupling, geometric frustration, and applied magnetic field. We present evidence that the magnetoelastic and magnetodielectric behavior in this material is governed by magnetic-field-controlled tetragonal-to-monoclinic phase changes. Most interestingly, for an applied field transverse to the ferrimagnetic ordering direction, H parallel [110], we find evidence for a field-tuned quantum phase transition to a tetragonal spin-disordered phase, indicating that a structurally symmetric, spin frustrated phase can be recovered at T approximately 0 for intermediate transverse fields in Mn3O4.
我们呈现了单晶 Mn3O4 的温度依赖 X 射线衍射和温度与场依赖拉曼散射研究,这些研究揭示了由于强自旋轨道耦合、几何各向异性和外加磁场的相互作用,在 spinels 中演变的磁结构相。我们提出的证据表明,这种材料的磁弹和磁介电行为受磁场控制的四方-单斜相转变控制。最有趣的是,对于施加于铁磁有序方向垂直的磁场,H 平行于[110],我们发现证据表明存在磁场调谐的量子相变到四方无序自旋相,这表明在 Mn3O4 中,中间横向场下,结构对称、自旋各向异性的相可以在 T 约为 0 时恢复。