Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA.
Biophys J. 2010 May 19;98(10):2127-35. doi: 10.1016/j.bpj.2010.01.048.
Current methods for analysis of data from studies of protein-protein interactions using fluorescence resonance energy transfer (FRET) emerged from several decades of research using wide-field microscopes and spectrofluorometers to measure fluorescence from individual cells or cell populations. Inherent to most measurements is an averaging of the distributions of FRET efficiencies over large populations of protein complexes, which washes out information regarding the stoichiometry and structure of protein complexes. Although the introduction of laser-scanning microscopes in principle could facilitate quantification of the distributions of FRET efficiencies in live cells, only comparatively recently did this potential fully materialize, through development of spectral- or lifetime-based approaches. To exploit this new opportunity in molecular imaging, it is necessary to further develop theoretical models and methods of data analysis. Using Monte Carlo simulations, we investigated FRET in homogenous and inhomogeneous spatial distributions of molecules. Our results indicate that an analysis based on distributions of FRET efficiencies presents significant advantages over the average-based approach, which include allowing for proper identification of biologically relevant FRET. This study provides insights into the effect of molecular crowding on FRET, and it offers a basis for information extraction from distributions of FRET efficiencies using simulations-based data fitting.
目前,使用荧光共振能量转移(FRET)分析蛋白质-蛋白质相互作用研究数据的方法源自数十年的研究,这些研究使用宽场显微镜和荧光分光光度计来测量单个细胞或细胞群体的荧光。大多数测量方法都涉及对大量蛋白质复合物的 FRET 效率分布进行平均处理,从而消除了有关蛋白质复合物的计量和结构的信息。尽管激光扫描显微镜的引入原则上可以促进在活细胞中定量 FRET 效率的分布,但直到最近,通过开发基于光谱或寿命的方法,这一潜力才得以充分实现。为了利用分子成像中的这一新机会,有必要进一步开发理论模型和数据分析方法。我们使用蒙特卡罗模拟研究了分子在均匀和非均匀空间分布中的 FRET。我们的结果表明,基于 FRET 效率分布的分析方法与基于平均值的方法相比具有显著优势,包括能够正确识别生物学相关的 FRET。这项研究深入了解了分子拥挤对 FRET 的影响,并为使用基于模拟的数据拟合从 FRET 效率分布中提取信息提供了基础。