Suppr超能文献

整体分布与平均方法在活细胞中蛋白质聚集体的荧光共振能量转移效率测定中的比较。

Comparison between whole distribution- and average-based approaches to the determination of fluorescence resonance energy transfer efficiency in ensembles of proteins in living cells.

机构信息

Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA.

出版信息

Biophys J. 2010 May 19;98(10):2127-35. doi: 10.1016/j.bpj.2010.01.048.

Abstract

Current methods for analysis of data from studies of protein-protein interactions using fluorescence resonance energy transfer (FRET) emerged from several decades of research using wide-field microscopes and spectrofluorometers to measure fluorescence from individual cells or cell populations. Inherent to most measurements is an averaging of the distributions of FRET efficiencies over large populations of protein complexes, which washes out information regarding the stoichiometry and structure of protein complexes. Although the introduction of laser-scanning microscopes in principle could facilitate quantification of the distributions of FRET efficiencies in live cells, only comparatively recently did this potential fully materialize, through development of spectral- or lifetime-based approaches. To exploit this new opportunity in molecular imaging, it is necessary to further develop theoretical models and methods of data analysis. Using Monte Carlo simulations, we investigated FRET in homogenous and inhomogeneous spatial distributions of molecules. Our results indicate that an analysis based on distributions of FRET efficiencies presents significant advantages over the average-based approach, which include allowing for proper identification of biologically relevant FRET. This study provides insights into the effect of molecular crowding on FRET, and it offers a basis for information extraction from distributions of FRET efficiencies using simulations-based data fitting.

摘要

目前,使用荧光共振能量转移(FRET)分析蛋白质-蛋白质相互作用研究数据的方法源自数十年的研究,这些研究使用宽场显微镜和荧光分光光度计来测量单个细胞或细胞群体的荧光。大多数测量方法都涉及对大量蛋白质复合物的 FRET 效率分布进行平均处理,从而消除了有关蛋白质复合物的计量和结构的信息。尽管激光扫描显微镜的引入原则上可以促进在活细胞中定量 FRET 效率的分布,但直到最近,通过开发基于光谱或寿命的方法,这一潜力才得以充分实现。为了利用分子成像中的这一新机会,有必要进一步开发理论模型和数据分析方法。我们使用蒙特卡罗模拟研究了分子在均匀和非均匀空间分布中的 FRET。我们的结果表明,基于 FRET 效率分布的分析方法与基于平均值的方法相比具有显著优势,包括能够正确识别生物学相关的 FRET。这项研究深入了解了分子拥挤对 FRET 的影响,并为使用基于模拟的数据拟合从 FRET 效率分布中提取信息提供了基础。

相似文献

2
Implementation of FRET Spectrometry Using Temporally Resolved Fluorescence: A Feasibility Study.
Int J Mol Sci. 2024 Apr 26;25(9):4706. doi: 10.3390/ijms25094706.
3
Fluorescent proteins for FRET microscopy: monitoring protein interactions in living cells.
Bioessays. 2012 May;34(5):341-50. doi: 10.1002/bies.201100098. Epub 2012 Mar 7.
4
Quantitative intensity-based FRET approaches--a comparative snapshot.
Biophys J. 2012 Nov 7;103(9):1821-7. doi: 10.1016/j.bpj.2012.09.031.
6
Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes.
Biophys J. 2001 Oct;81(4):2395-402. doi: 10.1016/S0006-3495(01)75886-9.
7
Uniform total internal reflection fluorescence illumination enables live cell fluorescence resonance energy transfer microscopy.
Microsc Microanal. 2013 Apr;19(2):350-9. doi: 10.1017/S1431927612014420. Epub 2013 Mar 11.
8
FRET by fluorescence polarization microscopy.
Methods Cell Biol. 2008;85:415-30. doi: 10.1016/S0091-679X(08)85018-2.
9
Time-resolved FRET fluorescence spectroscopy of visible fluorescent protein pairs.
Eur Biophys J. 2010 Jan;39(2):241-53. doi: 10.1007/s00249-009-0528-8. Epub 2009 Aug 20.
10
Development of probes for cellular functions using fluorescent proteins and fluorescence resonance energy transfer.
Annu Rev Biochem. 2011;80:357-73. doi: 10.1146/annurev-biochem-072909-094736.

引用本文的文献

1
Implementation of FRET Spectrometry Using Temporally Resolved Fluorescence: A Feasibility Study.
Int J Mol Sci. 2024 Apr 26;25(9):4706. doi: 10.3390/ijms25094706.
2
FRET Assays for the Identification of HSP90-Sba1 and HSP90α-p23 Binding Inhibitors.
Pharmaceuticals (Basel). 2024 Apr 17;17(4):516. doi: 10.3390/ph17040516.
3
Ab Initio Derivation of the FRET Equations Resolves Old Puzzles and Suggests Measurement Strategies.
Biophys J. 2019 Apr 2;116(7):1313-1327. doi: 10.1016/j.bpj.2019.02.016. Epub 2019 Feb 26.
5
Quaternary structures of opsin in live cells revealed by FRET spectrometry.
Biochem J. 2016 Nov 1;473(21):3819-3836. doi: 10.1042/BCJ20160422. Epub 2016 Sep 13.
10
FRET spectrometry: a new tool for the determination of protein quaternary structure in living cells.
Biophys J. 2013 Nov 5;105(9):1937-45. doi: 10.1016/j.bpj.2013.09.015.

本文引用的文献

1
Efficiency of resonance energy transfer in homo-oligomeric complexes of proteins.
J Biol Phys. 2007 Apr;33(2):109-27. doi: 10.1007/s10867-007-9046-z. Epub 2007 Oct 25.
2
FRET-based mapping of calmodulin bound to the RyR1 Ca2+ release channel.
Proc Natl Acad Sci U S A. 2009 Apr 14;106(15):6128-33. doi: 10.1073/pnas.0813010106. Epub 2009 Mar 30.
3
Fluorescence approaches to quantifying biomolecular interactions.
Methods Enzymol. 2008;450:79-106. doi: 10.1016/S0076-6879(08)03405-8.
4
Slide into action: dynamic shuttling of HIV reverse transcriptase on nucleic acid substrates.
Science. 2008 Nov 14;322(5904):1092-7. doi: 10.1126/science.1163108.
5
Enhanced FRET contrast in lifetime imaging.
Cytometry A. 2008 Aug;73(8):745-53. doi: 10.1002/cyto.a.20581.
7
Characterization of spectral FRET imaging microscopy for monitoring nuclear protein interactions.
J Microsc. 2007 Nov;228(Pt 2):139-52. doi: 10.1111/j.1365-2818.2007.01838.x.
8
Effect of membrane microheterogeneity and domain size on fluorescence resonance energy transfer.
Biophys J. 2007 Jul 15;93(2):655-67. doi: 10.1529/biophysj.106.090274. Epub 2007 Apr 20.
9
FRET measurements on fuzzy fluorescent nanostructures.
Microsc Res Tech. 2007 May;70(5):452-8. doi: 10.1002/jemt.20444.
10
In silico characterization of resonance energy transfer for disk-shaped membrane domains.
Biophys J. 2007 May 1;92(9):3040-51. doi: 10.1529/biophysj.106.093245. Epub 2007 Feb 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验