Institute of Microbiology, University Braunschweig, Brunswick, Germany.
Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10436-41. doi: 10.1073/pnas.1000956107. Epub 2010 May 19.
Cellular energy generation uses membrane-localized electron transfer chains for ATP synthesis. Formed ATP in turn is consumed for the biosynthesis of cellular building blocks. In contrast, heme cofactor biosynthesis was found driving ATP generation via electron transport after initial ATP consumption. The FMN enzyme protoporphyrinogen IX oxidase (HemG) of Escherichia coli abstracts six electrons from its substrate and transfers them via ubiquinone, cytochrome bo(3) (Cyo) and cytochrome bd (Cyd) oxidase to oxygen. Under anaerobic conditions electrons are transferred via menaquinone, fumarate (Frd) and nitrate reductase (Nar). Cyo, Cyd and Nar contribute to the proton motive force that drives ATP formation. Four electron transport chains from HemG via diverse quinones to Cyo, Cyd, Nar, and Frd were reconstituted in vitro from purified components. Characterization of E. coli mutants deficient in nar, frd, cyo, cyd provided in vivo evidence for a detailed model of heme biosynthesis coupled energy generation.
细胞能量产生利用膜定位的电子传递链合成 ATP。反过来,形成的 ATP 又被用于细胞构建块的生物合成。相比之下,血红素辅因子生物合成被发现通过初始 ATP 消耗后的电子传递来驱动 ATP 的产生。大肠杆菌的黄素单核苷酸酶原卟啉原 IX 氧化酶(HemG)从其底物中提取六个电子,并通过泛醌、细胞色素 bo(3)(Cyo)和细胞色素 bd(Cyd)氧化酶将其转移到氧气中。在厌氧条件下,电子通过menaquinone、延胡索酸(Frd)和硝酸盐还原酶(Nar)转移。Cyo、Cyd 和 Nar 有助于驱动 ATP 形成的质子动力。从 HemG 到 Cyo、Cyd、Nar 和 Frd 的四个电子传递链通过不同的醌在体外从纯化的组分中重新构建。对nar、frd、cyo、cyd 缺失的大肠杆菌突变体的表征提供了体内证据,证明血红素生物合成与能量产生偶联的详细模型是正确的。