Department of Reproductive Medicine, Center for Chronobiology, University of California, San Diego, La Jolla, CA 92093, USA.
J Neuroendocrinol. 2010 Jul;22(7):682-91. doi: 10.1111/j.1365-2826.2010.02030.x. Epub 2010 May 12.
The brains of males and females differ anatomically and physiologically, including sex differences in neurone size or number, synapse morphology and specific patterns of gene expression. Brain sex differences may underlie critical sex differences in physiology or behaviour, including several aspects of reproduction, such as the timing of sexual maturation (earlier in females than males) and the ability to generate a preovulatory gonadotrophin surge (in females only). The reproductive axis is controlled by afferent pathways that converge upon forebrain gonadotrophin-releasing hormone (GnRH) neurones, but GnRH neurones are not sexually dimorphic. Although most reproductive sex differences probably reflect sex differences in the upstream circuits and factors that regulate GnRH secretion, the key sexually-dimorphic factors that influence reproductive status have remained poorly defined. The recently-identified neuropeptide kisspeptin, encoded by the Kiss1 gene, is an important regulator of GnRH secretion, and Kiss1 neurones in rodents are sexually dimorphic in specific hypothalamic populations, including the anteroventral periventricular nucleus-periventricular nucleus continuum (AVPV/PeN) and the arcuate nucleus (ARC). In the adult AVPV/PeN, Kiss1 neurones are more abundant in females than males, representing a sex difference that is regulated by oestradiol signalling during critical periods of postnatal and pubertal development. By contrast, Kiss1 neurones in the ARC are not sexually differentiated in adult rodents but, in mice, the regulation of ARC Kiss1 cells by gonadal hormone-independent factors is sexually dimorphic during prepubertal development. These various sex differences in hypothalamic Kiss1 neurones may relate to known sex differences in reproductive physiology, such as puberty onset and positive feedback.
男性和女性的大脑在解剖和生理上存在差异,包括神经元大小或数量、突触形态和特定基因表达模式的性别差异。大脑性别差异可能是生理或行为上关键性别差异的基础,包括生殖的几个方面,例如性成熟的时间(女性比男性早)和产生促性腺激素释放激素(GnRH)峰的能力(仅在女性中)。生殖轴由汇聚到前脑 GnRH 神经元的传入途径控制,但 GnRH 神经元没有性别二态性。尽管大多数生殖性别差异可能反映了调节 GnRH 分泌的上游回路和因素中的性别差异,但影响生殖状态的关键性别二态性因素仍未得到明确界定。最近发现的神经肽 kisspeptin 由 Kiss1 基因编码,是 GnRH 分泌的重要调节剂,啮齿动物的 Kiss1 神经元在特定下丘脑群体中存在性别二态性,包括前腹侧室旁核-室旁核连续体(AVPV/PeN)和弓状核(ARC)。在成年 AVPV/PeN 中,雌性的 Kiss1 神经元比雄性更丰富,这是一种性别差异,受产后和青春期发育关键时期雌激素信号的调节。相比之下,成年啮齿动物的 ARC 中的 Kiss1 神经元没有性别分化,但在小鼠中,ARC Kiss1 细胞受性腺激素独立因素的调节在青春期前发育期间具有性别二态性。这些下丘脑 Kiss1 神经元的各种性别差异可能与已知的生殖生理学性别差异有关,例如青春期开始和正反馈。