Suppr超能文献

下丘脑 Kiss1 神经元性别差异的性腺和非性腺调节。

Gonadal and nongonadal regulation of sex differences in hypothalamic Kiss1 neurones.

机构信息

Department of Reproductive Medicine, Center for Chronobiology, University of California, San Diego, La Jolla, CA 92093, USA.

出版信息

J Neuroendocrinol. 2010 Jul;22(7):682-91. doi: 10.1111/j.1365-2826.2010.02030.x. Epub 2010 May 12.

Abstract

The brains of males and females differ anatomically and physiologically, including sex differences in neurone size or number, synapse morphology and specific patterns of gene expression. Brain sex differences may underlie critical sex differences in physiology or behaviour, including several aspects of reproduction, such as the timing of sexual maturation (earlier in females than males) and the ability to generate a preovulatory gonadotrophin surge (in females only). The reproductive axis is controlled by afferent pathways that converge upon forebrain gonadotrophin-releasing hormone (GnRH) neurones, but GnRH neurones are not sexually dimorphic. Although most reproductive sex differences probably reflect sex differences in the upstream circuits and factors that regulate GnRH secretion, the key sexually-dimorphic factors that influence reproductive status have remained poorly defined. The recently-identified neuropeptide kisspeptin, encoded by the Kiss1 gene, is an important regulator of GnRH secretion, and Kiss1 neurones in rodents are sexually dimorphic in specific hypothalamic populations, including the anteroventral periventricular nucleus-periventricular nucleus continuum (AVPV/PeN) and the arcuate nucleus (ARC). In the adult AVPV/PeN, Kiss1 neurones are more abundant in females than males, representing a sex difference that is regulated by oestradiol signalling during critical periods of postnatal and pubertal development. By contrast, Kiss1 neurones in the ARC are not sexually differentiated in adult rodents but, in mice, the regulation of ARC Kiss1 cells by gonadal hormone-independent factors is sexually dimorphic during prepubertal development. These various sex differences in hypothalamic Kiss1 neurones may relate to known sex differences in reproductive physiology, such as puberty onset and positive feedback.

摘要

男性和女性的大脑在解剖和生理上存在差异,包括神经元大小或数量、突触形态和特定基因表达模式的性别差异。大脑性别差异可能是生理或行为上关键性别差异的基础,包括生殖的几个方面,例如性成熟的时间(女性比男性早)和产生促性腺激素释放激素(GnRH)峰的能力(仅在女性中)。生殖轴由汇聚到前脑 GnRH 神经元的传入途径控制,但 GnRH 神经元没有性别二态性。尽管大多数生殖性别差异可能反映了调节 GnRH 分泌的上游回路和因素中的性别差异,但影响生殖状态的关键性别二态性因素仍未得到明确界定。最近发现的神经肽 kisspeptin 由 Kiss1 基因编码,是 GnRH 分泌的重要调节剂,啮齿动物的 Kiss1 神经元在特定下丘脑群体中存在性别二态性,包括前腹侧室旁核-室旁核连续体(AVPV/PeN)和弓状核(ARC)。在成年 AVPV/PeN 中,雌性的 Kiss1 神经元比雄性更丰富,这是一种性别差异,受产后和青春期发育关键时期雌激素信号的调节。相比之下,成年啮齿动物的 ARC 中的 Kiss1 神经元没有性别分化,但在小鼠中,ARC Kiss1 细胞受性腺激素独立因素的调节在青春期前发育期间具有性别二态性。这些下丘脑 Kiss1 神经元的各种性别差异可能与已知的生殖生理学性别差异有关,例如青春期开始和正反馈。

相似文献

1
Gonadal and nongonadal regulation of sex differences in hypothalamic Kiss1 neurones.
J Neuroendocrinol. 2010 Jul;22(7):682-91. doi: 10.1111/j.1365-2826.2010.02030.x. Epub 2010 May 12.
2
Sex steroids and the control of the Kiss1 system: developmental roles and major regulatory actions.
J Neuroendocrinol. 2012 Jan;24(1):22-33. doi: 10.1111/j.1365-2826.2011.02230.x.
6
Visualisation of Kiss1 Neurone Distribution Using a Kiss1-CRE Transgenic Mouse.
J Neuroendocrinol. 2016 Nov;28(11). doi: 10.1111/jne.12435.
7
8
Deficiency of arcuate nucleus kisspeptin results in postpubertal central hypogonadism.
Am J Physiol Endocrinol Metab. 2021 Aug 1;321(2):E264-E280. doi: 10.1152/ajpendo.00088.2021. Epub 2021 Jun 28.
10
Kisspeptin signalling in the brain: steroid regulation in the rodent and ewe.
Brain Res Rev. 2008 Mar;57(2):288-98. doi: 10.1016/j.brainresrev.2007.04.002. Epub 2007 Apr 19.

引用本文的文献

3
Redefining Health-Related Fitness: The Adaptive Ability to Foster Survival Possibilities.
Sports Med Open. 2025 Mar 6;11(1):23. doi: 10.1186/s40798-025-00826-9.
4
Clinical and Genetic Mechanisms in Patients with <italic>MC2R</italic> Deficiency Presenting with Early Puberty.
Horm Res Paediatr. 2025;98(5):543-550. doi: 10.1159/000542307. Epub 2024 Nov 1.
5
A systematic scoping review of the multifaceted role of phoenixin in metabolism: insights from and studies.
Front Endocrinol (Lausanne). 2024 Sep 27;15:1406531. doi: 10.3389/fendo.2024.1406531. eCollection 2024.
6
Dax1 modulates ERα-dependent hypothalamic estrogen sensing in female mice.
Nat Commun. 2023 May 29;14(1):3076. doi: 10.1038/s41467-023-38618-y.
7
Small RNA-seq and hormones in the testes of dwarf hamsters () reveal the potential pathways in photoperiod regulated reproduction.
Heliyon. 2023 Apr 23;9(5):e15687. doi: 10.1016/j.heliyon.2023.e15687. eCollection 2023 May.
9
The role of Kisspeptin signaling in Oocyte maturation.
Front Endocrinol (Lausanne). 2022 Aug 22;13:917464. doi: 10.3389/fendo.2022.917464. eCollection 2022.
10
Kisspeptins inhibit human airway smooth muscle proliferation.
JCI Insight. 2022 May 23;7(10):e152762. doi: 10.1172/jci.insight.152762.

本文引用的文献

1
Sexual differentiation and development of forebrain reproductive circuits.
Curr Opin Neurobiol. 2010 Aug;20(4):424-31. doi: 10.1016/j.conb.2010.04.004. Epub 2010 May 12.
2
Coming of age in the kisspeptin era: sex differences, development, and puberty.
Mol Cell Endocrinol. 2010 Aug 5;324(1-2):51-63. doi: 10.1016/j.mce.2010.01.017. Epub 2010 Jan 18.
3
Distribution and postnatal development of Gpr54 gene expression in mouse brain and gonadotropin-releasing hormone neurons.
Endocrinology. 2010 Jan;151(1):312-21. doi: 10.1210/en.2009-0552. Epub 2009 Dec 4.
4
Critical roles of kisspeptins in female puberty and preovulatory gonadotropin surges as revealed by a novel antagonist.
Endocrinology. 2010 Feb;151(2):722-30. doi: 10.1210/en.2009-0803. Epub 2009 Dec 1.
7
Kisspeptin/Gpr54-independent gonadotrophin-releasing hormone activity in Kiss1 and Gpr54 mutant mice.
J Neuroendocrinol. 2009 Dec;21(12):1015-23. doi: 10.1111/j.1365-2826.2009.01926.x. Epub 2009 Oct 14.
8
The epigenetics of sex differences in the brain.
J Neurosci. 2009 Oct 14;29(41):12815-23. doi: 10.1523/JNEUROSCI.3331-09.2009.
9
Kisspeptin signaling in the brain.
Endocr Rev. 2009 Oct;30(6):713-43. doi: 10.1210/er.2009-0005. Epub 2009 Sep 21.
10
Sex differences in the regulation of Kiss1/NKB neurons in juvenile mice: implications for the timing of puberty.
Am J Physiol Endocrinol Metab. 2009 Nov;297(5):E1212-21. doi: 10.1152/ajpendo.00461.2009. Epub 2009 Sep 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验