Université de Toulouse, INSA, UPS; LPCNO, IRSAMC, 35 avenue de Rangueil, 31077 Toulouse, France.
Chemistry. 2010 Aug 16;16(31):9572-84. doi: 10.1002/chem.201000298.
Compounds [Cp*(2)M(2)O(5)] (M = Mo, 1; W, 2) are efficient pre-catalysts for cyclooctene (COE) epoxidation by aqueous H(2)O(2) in acetonitrile/toluene. The reaction is quantitative, selective and takes place approximately 50 times faster for the W system (k(obs) = 4.32(9)x10(-4) s(-1) at 55 degrees C and 3x10(-3) M concentration for the dinuclear complex, vs. 1.06(7)x10(-5) s(-1) for the Mo system). The rate law is first order in catalyst and COE substrate (k = 0.138(7) M(-1) s(-1) for the W system at 55 degrees C), whereas increasing the concentration of H(2)O(2) slows down the reaction because of an inhibiting effect of the greater amount of water. The activation parameters for the more active W systems (DeltaH(double dagger) = 10.2(6) kcal mol(-1); DeltaS(double dagger) = -32(2) cal mol(-1) K(-1)) were obtained from an Eyring study in the 25-55 degrees C temperature range. The H(2)O(2)urea adduct was less efficient as an oxidant than the aqueous H(2)O(2) solution. Replacement of toluene with diethyl ether did not significantly affect the catalyst efficiency, whereas replacement with THF slowed down the process. The epoxidation of ethylene as a model olefin, catalysed by the [CpMO(2)Cl] systems (M = W, Mo) in the presence of H(2)O(2) as oxidant and acetonitrile as solvent, has been investigated by DFT calculations with the use of the conductor-like polarisable continuum model (CPCM). For both metal systems, the rate-limiting step is the transfer of the hydroperoxido O(alpha) atom to the olefin, in accordance with the first-order dependence on the substrate and the zero-order dependence on H(2)O(2) found experimentally in the catalytic data. The activation barrier corresponding to the rate-limiting step is 4 kcal lower for the W complex than for the corresponding Mo analogue (32.3 vs. 28.3 kcal mol(-1)). This result reproduces well the higher catalytic activity of the W species. The different catalytic behaviour between the two systems is rationalised by a natural bond orbital (NBO) study and natural population analyses (NPA). Compared to Mo, the W(VI) centre withdraws more electron density from the sigma bonding [O-O] orbital and favours, as a consequence, the nucleophilic attack of the external olefin on the sigma[O-O] orbital.
化合物 [Cp*(2)M(2)O(5)](M = Mo,1;W,2)是通过乙腈/甲苯中的水合 H(2)O(2)对环辛烯(COE)进行环氧化的有效预催化剂。该反应是定量的、选择性的,对于 W 体系来说,反应速度大约快 50 倍(在 55°C 和 3x10(-3)M 浓度下,双核配合物的 k(obs) = 4.32(9)x10(-4)s(-1),而 Mo 体系的 k(obs) = 1.06(7)x10(-5)s(-1))。速率定律对催化剂和 COE 底物均为一级(在 55°C 下,W 体系的 k = 0.138(7)M(-1)s(-1)),而增加 H(2)O(2)的浓度会由于水的抑制作用而减缓反应。对于更活跃的 W 体系,通过 Eyring 研究获得了更高的活化参数(DeltaH(double dagger) = 10.2(6) kcal mol(-1);DeltaS(double dagger) = -32(2) cal mol(-1) K(-1))。在 25-55°C 的温度范围内进行了研究。H(2)O(2)脲加合物作为氧化剂的效率不如水合 H(2)O(2)溶液。用二乙醚代替甲苯对催化剂效率没有显著影响,而用四氢呋喃代替则会减缓反应过程。通过 DFT 计算使用导体类似极化连续模型(CPCM)研究了在 H(2)O(2)作为氧化剂和乙腈作为溶剂的情况下,[CpMO(2)Cl]体系(M = W、Mo)催化乙烯作为模型烯烃的环氧化反应。对于这两种金属体系,速率限制步骤是将过氧氢原子转移到烯烃上,这与实验中在催化数据中发现的对底物的一级依赖性和对 H(2)O(2)的零级依赖性一致。与相应的 Mo 类似物相比,W 配合物的速率限制步骤的活化能壁垒低 4 kcal(32.3 比 28.3 kcal mol(-1))。这一结果很好地再现了 W 物种更高的催化活性。通过自然键轨道(NBO)研究和自然布居分析(NPA),对两个体系之间的不同催化行为进行了合理化解释。与 Mo 相比,W(VI)中心从 sigma 键[O-O]轨道上吸引更多的电子密度,并因此有利于外部烯烃对 sigma[O-O]轨道的亲核攻击。