Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
Phys Chem Chem Phys. 2010 Jul 28;12(28):7874-82. doi: 10.1039/c001602k. Epub 2010 May 26.
Ionic liquids (ILs) feature a variety of properties that make them a unique class of solvents. To gain a better understanding of how ILs solvate compounds of different chemical structure, we used pulsed high-field electron paramagnetic resonance (EPR) spectroscopy at W-band (approximately 94 GHz) and continuous wave EPR at X-band (approximately 9.4 GHz) on three TEMPO-based spin probes with different substitutions at the 4-position: 4-R-2,2,6,6-tetramethylpiperidine-1-oxyl, with R = N(CH(3))(3)(+), Cat-1, R = COO(-), TEMPO-4-carboxylate, and R = OH, TEMPOL. The spin probes are dissolved in imidazolium based ILs with different alkyl chain lengths (-C(2)H(5), -C(4)H(9), -C(6)H(13)) and anions (BF(4)(-), PF(6)(-)) and also in molecular solvents (methanol, water-glycerol). X-Band EPR at RT shows that the reorientational motion of the charged spin probes in ILs is about fivefold slower than that of the TEMPOL. Moreover, anion variation from BF(4)(-) to PF(6)(-) in ILs most strongly slows down the rotational motion (as measured by the rotational correlation time tau(r)) of Cat-1, followed by TEMPOL, while tau(r) of TEMPO-4-carboxylate is least affected. The EPR parameters g(xx) and A(zz) (tensor elements of the g- and hyperfine tensor) are sensitive to environmental effects and are only fully resolved at the high field used in this study. Changes of g(xx) and A(zz) values of the Cat-1 in ILs and methanol are very small especially compared to that of TEMPO-4-carboxylate, indicating that Cat-1 is located in a polar region of the ILs resembling the situation in methanol. On the other hand, the g(xx) value of TEMPO-4-carboxylate is sensitive to the length of alkyl group which shows that TEMPO-4-carboxylate is close to the nonpolar region of ILs. The small differences in the chemical substitution of the spin probes used here are sufficient for the molecules to reside in different domains of different dielectric properties in ILs. Our combined results are in good agreement with a picture of a nanophase separation, in which the charged cations and anions form polar regions and the hydrophobic alkyl chains of the IL cations form non-polar regions.
离子液体 (ILs) 具有多种特性,使其成为一类独特的溶剂。为了更好地了解 ILs 如何溶解具有不同化学结构的化合物,我们使用了脉冲高场电子顺磁共振 (EPR) 光谱在 W 波段(约 94GHz)和连续波 EPR 在 X 波段(约 9.4GHz)上对三种具有不同 4-位取代基的基于 TEMPO 的自旋探针进行了研究:4-R-2,2,6,6-四甲基哌啶-1-氧基,其中 R = N(CH(3))(3)(+),Cat-1,R = COO(-),TEMPO-4-羧酸酯和 R = OH,TEMPOL。自旋探针溶解在具有不同烷基链长 (-C(2)H(5),-C(4)H(9),-C(6)H(13)) 和阴离子 (BF(4)(-),PF(6)(-)) 的咪唑鎓基 ILs 以及分子溶剂 (甲醇、水-甘油) 中。室温下的 X 波段 EPR 表明,带电荷的自旋探针在 ILs 中的重排运动比 TEMPOL 慢约五倍。此外,从 BF(4)(-)到 PF(6)(-)的阴离子变化在 ILs 中最强烈地减缓了 Cat-1 的旋转运动(由旋转相关时间 tau(r) 测量),其次是 TEMPOL,而 TEMPO-4-羧酸酯的 tau(r) 受影响最小。EPR 参数 g(xx)和 A(zz)(g-和超精细张量的张量元素)对环境影响敏感,仅在本研究中使用的高场完全分辨。Cat-1 在 ILs 和甲醇中的 g(xx)和 A(zz)值的变化非常小,尤其是与 TEMPO-4-羧酸酯相比,表明 Cat-1 位于 ILs 中类似于甲醇的极性区域。另一方面,TEMPO-4-羧酸酯的 g(xx)值对烷基链长度敏感,表明 TEMPO-4-羧酸酯靠近 ILs 的非极性区域。这里使用的自旋探针的化学取代的微小差异足以使分子存在于 ILs 中具有不同介电性质的不同区域。我们的综合结果与纳米相分离的情况非常吻合,其中带电荷的阳离子和阴离子形成极性区域,IL 阳离子的疏水性烷基链形成非极性区域。