Suppr超能文献

高尔基α-甘露糖苷酶 II 催化糖基化步骤的分子机制:QM/MM 元动力学研究。

Molecular mechanism of the glycosylation step catalyzed by Golgi alpha-mannosidase II: a QM/MM metadynamics investigation.

机构信息

Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, USA.

出版信息

J Am Chem Soc. 2010 Jun 23;132(24):8291-300. doi: 10.1021/ja909249u.

Abstract

Golgi alpha-mannosidase II (GMII), a member of glycoside hydrolase family 38, cleaves two mannosyl residues from GlcNAcMan(5)GlcNAc(2) as part of the N-linked glycosylation pathway. To elucidate the molecular and electronic details of the reaction mechanism, in particular the conformation of the substrate at the transition state, we performed quantum mechanics/molecular mechanics metadynamics simulations of the glycosylation reaction catalyzed by GMII. The calculated free energy of activation for mannosyl glycosylation (23 kcal/mol) agrees very well with experiments, as does the conformation of the glycon mannosyl ring in the product of the glycosylation reaction (the covalent intermediate). In addition, we provide insight into the electronic aspects of the molecular mechanism that were not previously available. We show that the substrate adopts an (O)S(2)/B(2,5) conformation in the GMII Michaelis complex and that the nucleophilic attack occurs before complete departure of the leaving group, consistent with a D(N)A(N) reaction mechanism. The transition state has a clear oxacarbenium ion (OCI) character, with the glycosylation reaction following an (O)S(2)/B(2,5) --> B(2,5) [TS] --> (1)S(5) itinerary, agreeing with an earlier proposal based on comparing alpha- and beta-mannanases. The simulations also demonstrate that an active-site Zn ion helps to lengthen the O2'-H(O2') bond when the substrate acquires OCI character, relieving the electron deficiency of the OCI-like species. Our results can be used to explain the potency of recently formulated GMII anticancer inhibitors, and they are potentially relevant in deriving new inhibitors.

摘要

高尔基糖基转移酶 II(GMII),糖苷水解酶家族 38 的一个成员,作为 N 连接糖基化途径的一部分,从 GlcNAcMan(5)GlcNAc(2) 中切割出两个甘露糖残基。为了阐明反应机制的分子和电子细节,特别是过渡态下底物的构象,我们对 GMII 催化的糖基化反应进行了量子力学/分子力学元动力学模拟。计算得到的甘露糖糖基化的活化自由能(23 kcal/mol)与实验非常吻合,糖基化反应产物中糖基甘露糖环的构象(共价中间体)也是如此。此外,我们还提供了以前无法获得的分子机制的电子方面的见解。我们表明,在 GMII 米氏复合物中,底物采用(O)S(2)/B(2,5) 构象,亲核攻击发生在离去基团完全离去之前,符合 D(N)A(N)反应机制。过渡态具有明显的氧杂碳正离子(OCI)特征,糖基化反应遵循(O)S(2)/B(2,5) --> B(2,5)[TS] --> (1)S(5)途径,与基于比较α-和β-甘露聚糖酶的早期提议一致。模拟还表明,当底物获得 OCI 特征时,活性位点 Zn 离子有助于拉长 O2'-H(O2') 键,从而缓解 OCI 样物种的电子缺失。我们的结果可用于解释最近制定的 GMII 抗癌抑制剂的效力,并且它们在衍生新抑制剂方面具有潜在相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验