Suppr超能文献

与肥胖啮齿动物相比,瘦鼠肌肉收缩的代谢特征分析。

Metabolic profiling of muscle contraction in lean compared with obese rodents.

机构信息

Research, Harry S. Truman Memorial Veterans Affairs Hospital and Departments of Nutrition and Exercise Physiology and Internal Medicine, University of Missouri, Columbia, Missour, USA.

出版信息

Am J Physiol Regul Integr Comp Physiol. 2010 Sep;299(3):R926-34. doi: 10.1152/ajpregu.00093.2010. Epub 2010 May 26.

Abstract

Interest in the pathophysiological relevance of intramuscular triacylglycerol (IMTG) accumulation has grown from numerous studies reporting that abnormally high glycerolipid levels in tissues of obese and diabetic subjects correlate negatively with glucose tolerance. Here, we used a hindlimb perfusion model to examine the impact of obesity and elevated IMTG levels on contraction-induced changes in skeletal muscle fuel metabolism. Comprehensive lipid profiling was performed on gastrocnemius muscles harvested from lean and obese Zucker rats immediately and 25 min after 15 min of one-legged electrically stimulated contraction compared with the contralateral control (rested) limbs. Predictably, IMTG content was grossly elevated in control muscles from obese rats compared with their lean counterparts. In muscles of obese (but not lean) rats, contraction resulted in marked hydrolysis of IMTG, which was then restored to near resting levels during 25 min of recovery. Despite dramatic phenotypical differences in contraction-induced IMTG turnover, muscle levels of diacylglycerol (DAG) and long-chain acyl-CoAs (LCACoA) were surprisingly similar between groups. Tissue profiles of acylcarnitine metabolites suggested that the surfeit of IMTG in obese rats fueled higher rates of fat oxidation relative to the lean group. Muscles of the obese rats had reduced lactate levels immediately following contraction and higher glycogen resynthesis during recovery, consistent with a lipid-associated glucose-sparing effect. Together, these findings suggest that contraction-induced mobilization of local lipid reserves in obese muscles promotes beta-oxidation, while discouraging glucose utilization. Further studies are necessary to determine whether persistent oxidation of IMTG-derived fatty acids contributes to systemic glucose intolerance in other physiological settings.

摘要

人们对肌内三酰甘油(IMTG)积累的病理生理学相关性产生了浓厚的兴趣,这源于许多研究报告称,肥胖和糖尿病患者组织中甘油脂质水平异常升高与葡萄糖耐量呈负相关。在这里,我们使用后肢灌流模型研究了肥胖和 IMTG 水平升高对收缩引起的骨骼肌燃料代谢变化的影响。我们对取自瘦型和肥胖型 Zucker 大鼠的比目鱼肌进行了全面的脂质谱分析,这些大鼠在进行 15 分钟单腿电刺激收缩后立即和 25 分钟与对侧对照(休息)肢体相比。可以预见的是,与瘦型大鼠相比,肥胖型大鼠对照肌肉中的 IMTG 含量明显升高。在肥胖型(而非瘦型)大鼠的肌肉中,收缩导致 IMTG 发生明显水解,然后在 25 分钟的恢复过程中恢复到接近休息水平。尽管收缩诱导的 IMTG 周转率存在明显的表型差异,但两组肌肉中的二酰基甘油(DAG)和长链酰基辅酶 A(LCACoA)水平惊人地相似。酰基辅酶 A 代谢物的组织谱表明,肥胖大鼠肌肉中过多的 IMTG 为相对瘦型大鼠提供了更高的脂肪氧化率。收缩后即刻,肥胖大鼠的肌肉中乳酸水平降低,恢复期间糖原合成增加,这与脂肪相关的葡萄糖节省效应一致。综上所述,这些发现表明,收缩诱导的肥胖肌肉中局部脂质储备的动员促进了β氧化,同时抑制了葡萄糖的利用。进一步的研究有必要确定 IMTG 衍生脂肪酸的持续氧化是否会导致其他生理情况下的全身葡萄糖不耐受。

相似文献

1
Metabolic profiling of muscle contraction in lean compared with obese rodents.
Am J Physiol Regul Integr Comp Physiol. 2010 Sep;299(3):R926-34. doi: 10.1152/ajpregu.00093.2010. Epub 2010 May 26.
3
Contraction of insulin-resistant muscle normalizes insulin action in association with increased mitochondrial activity and fatty acid catabolism.
Am J Physiol Cell Physiol. 2007 Feb;292(2):C729-39. doi: 10.1152/ajpcell.00311.2006. Epub 2006 Oct 18.
4
In obese rat muscle transport of palmitate is increased and is channeled to triacylglycerol storage despite an increase in mitochondrial palmitate oxidation.
Am J Physiol Endocrinol Metab. 2009 Apr;296(4):E738-47. doi: 10.1152/ajpendo.90896.2008. Epub 2009 Jan 13.
6
Contractile activity restores insulin responsiveness in skeletal muscle of obese Zucker rats.
Biochem J. 1993 Jan 15;289 ( Pt 2)(Pt 2):423-6. doi: 10.1042/bj2890423.
7
Rosiglitazone enhances glucose tolerance by mechanisms other than reduction of fatty acid accumulation within skeletal muscle.
Endocrinology. 2004 Dec;145(12):5665-70. doi: 10.1210/en.2004-0659. Epub 2004 Sep 16.
8
Muscle type-specific fatty acid metabolism in insulin resistance: an integrated in vivo study in Zucker diabetic fatty rats.
Am J Physiol Endocrinol Metab. 2006 May;290(5):E989-97. doi: 10.1152/ajpendo.00459.2005. Epub 2005 Dec 27.
9
Glucose transport and cell surface GLUT-4 protein in skeletal muscle of the obese Zucker rat.
Am J Physiol. 1996 Aug;271(2 Pt 1):E294-301. doi: 10.1152/ajpendo.1996.271.2.E294.
10
Malonyl-CoA content and fatty acid oxidation in rat muscle and liver in vivo.
Am J Physiol Endocrinol Metab. 2000 Aug;279(2):E259-65. doi: 10.1152/ajpendo.2000.279.2.E259.

引用本文的文献

4
Lack of exercise is a major cause of chronic diseases.
Compr Physiol. 2012 Apr;2(2):1143-211. doi: 10.1002/cphy.c110025.
5
Measurements of diacylglycerols in skeletal muscle by atmospheric pressure chemical ionization mass spectrometry.
Lipids. 2013 Mar;48(3):287-96. doi: 10.1007/s11745-013-3766-6. Epub 2013 Feb 8.
6
Ectopic lipid deposition and the metabolic profile of skeletal muscle in ovariectomized mice.
Am J Physiol Regul Integr Comp Physiol. 2013 Feb;304(3):R206-17. doi: 10.1152/ajpregu.00428.2012. Epub 2012 Nov 28.
8
Lipid-induced mitochondrial stress and insulin action in muscle.
Cell Metab. 2012 May 2;15(5):595-605. doi: 10.1016/j.cmet.2012.04.010.
9
Direct binding of triglyceride to fat storage-inducing transmembrane proteins 1 and 2 is important for lipid droplet formation.
Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):19581-6. doi: 10.1073/pnas.1110817108. Epub 2011 Nov 21.
10
Re-patterning of skeletal muscle energy metabolism by fat storage-inducing transmembrane protein 2.
J Biol Chem. 2011 Dec 9;286(49):42188-42199. doi: 10.1074/jbc.M111.297127. Epub 2011 Oct 14.

本文引用的文献

1
Carnitine insufficiency caused by aging and overnutrition compromises mitochondrial performance and metabolic control.
J Biol Chem. 2009 Aug 21;284(34):22840-52. doi: 10.1074/jbc.M109.032888. Epub 2009 Jun 24.
2
In obese rat muscle transport of palmitate is increased and is channeled to triacylglycerol storage despite an increase in mitochondrial palmitate oxidation.
Am J Physiol Endocrinol Metab. 2009 Apr;296(4):E738-47. doi: 10.1152/ajpendo.90896.2008. Epub 2009 Jan 13.
4
Intramuscular lipid oxidation and obesity.
Am J Physiol Regul Integr Comp Physiol. 2008 Apr;294(4):R1111-6. doi: 10.1152/ajpregu.00396.2007. Epub 2008 Feb 6.
5
Contraction of insulin-resistant muscle normalizes insulin action in association with increased mitochondrial activity and fatty acid catabolism.
Am J Physiol Cell Physiol. 2007 Feb;292(2):C729-39. doi: 10.1152/ajpcell.00311.2006. Epub 2006 Oct 18.
6
Dysregulation of muscle fatty acid metabolism in type 2 diabetes is independent of malonyl-CoA.
Diabetologia. 2006 Sep;49(9):2144-52. doi: 10.1007/s00125-006-0362-9. Epub 2006 Jul 26.
7
Skeletal muscle lipid metabolism in exercise and insulin resistance.
Physiol Rev. 2006 Jan;86(1):205-43. doi: 10.1152/physrev.00023.2004.
9
Increased intramuscular lipid storage in the insulin-resistant and endurance-trained state.
Pflugers Arch. 2006 Feb;451(5):606-16. doi: 10.1007/s00424-005-1509-0. Epub 2005 Sep 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验