Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK.
Nature. 2010 May 27;465(7297):462-5. doi: 10.1038/nature09052.
Post-perovskite MgSiO(3) is believed to be present in the D'' region of the Earth's lowermost mantle. Its existence has been used to explain a number of seismic observations, such as the D'' reflector and the high degree of seismic anisotropy within the D'' layer. Ionic diffusion in post-perovskite controls its viscosity, which in turn controls the thermal and chemical coupling between the core and the mantle, the development of plumes and the stability of deep chemical reservoirs. Here we report the use of first-principles methods to calculate absolute diffusion rates in post-perovskite under the conditions found in the Earth's lower mantle. We find that the diffusion of Mg(2+) and Si(4+) in post-perovskite is extremely anisotropic, with almost eight orders of magnitude difference between the fast and slow directions. If post-perovskite in the D'' layer shows significant lattice-preferred orientation, the fast diffusion direction will render post-perovskite up to four orders of magnitude weaker than perovskite. The presence of weak post-perovskite strongly increases the heat flux across the core-mantle boundary and alters the geotherm. It also provides an explanation for laterally varying viscosity in the lowermost mantle, as required by long-period geoid models. Moreover, the behaviour of very weak post-perovskite can reconcile seismic observation of a D'' reflector with recent experiments showing that the width of the perovskite-to-post-perovskite transition is too wide to cause sharp reflectors. We suggest that the observed sharp D'' reflector is caused by a rapid change in seismic anisotropy. Once sufficient perovskite has transformed into post-perovskite, post-perovskite becomes interconnected and strain is partitioned into this weaker phase. At this point, the weaker post-perovskite will start to deform rapidly, thereby developing a strong crystallographic texture. We show that the expected seismic contrast between the deformed perovskite-plus-post-perovskite assemblage and the overlying isotropic perovskite-plus-post-perovskite assemblage is consistent with seismic observations.
后钙钛矿 MgSiO(3) 被认为存在于地球下地幔的 D''区。它的存在解释了许多地震观测结果,例如 D''反射器和 D''层内的高地震各向异性。后钙钛矿中的离子扩散控制其粘度,进而控制核与地幔之间的热和化学耦合、地幔柱的形成和深部化学储层的稳定性。在这里,我们报告了使用第一性原理方法来计算下地幔条件下后钙钛矿中的绝对扩散率。我们发现,后钙钛矿中 Mg(2+)和 Si(4+)的扩散具有极高的各向异性,快、慢方向之间的扩散率差异达到了八个数量级。如果 D''层中的后钙钛矿表现出明显的晶格择优取向,那么快扩散方向会使后钙钛矿的强度比钙钛矿弱四个数量级。弱后钙钛矿的存在大大增加了穿过核幔边界的热通量并改变了地温梯度。它还为低地幔中横向变化的粘度提供了一种解释,这是长周期重力模型所要求的。此外,非常弱的后钙钛矿的行为可以调和 D''反射器的地震观测结果与最近的实验结果,最近的实验表明,钙钛矿到后钙钛矿转变的宽度太宽,无法产生尖锐的反射器。我们认为,观察到的尖锐的 D''反射器是由地震各向异性的快速变化引起的。一旦足够的钙钛矿转变为后钙钛矿,后钙钛矿就会相互连接,应变被分配到这个较弱的相中。此时,较弱的后钙钛矿将开始迅速变形,从而形成强烈的晶体织构。我们表明,变形后的钙钛矿加后钙钛矿组合与上覆各向同性的钙钛矿加后钙钛矿组合之间的预期地震对比度与地震观测结果一致。