Suppr超能文献

直接紫外光谱法测量选定的离子液体蒸汽。

Direct UV-spectroscopic measurement of selected ionic-liquid vapors.

机构信息

Department of Chemistry, Zhejiang University, Hangzhou 310027, PR China.

出版信息

Phys Chem Chem Phys. 2010 Jul 14;12(26):7246-50. doi: 10.1039/c001101k. Epub 2010 May 27.

Abstract

The hallmark of ionic liquids lies in their negligible vapor pressure. This ultralow vapor pressure makes it difficult to conduct the direct spectroscopic measurement of ionic-liquid vapors. In fact, there have been no electronic spectroscopic data currently available for ionic-liquid vapors. This deficiency significantly hampers the fundamental understanding of the unique molecular structures of ionic liquids. Herein, the UV absorption spectra of eight ionic liquids, such as 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([Bmim(+)] [Tf(2)N(-)]) and 1-ethyl-3-methylimidazolium bis(perfluoroethylsulfonyl)imide ([Emim(+)][beti(-)]) in the vapor phase in a distillation-like environment, were measured through a high-temperature spectroscopic technique to fill this knowledge gap. Two strong absorption peaks of the [Bmim(+)][Tf(2)N(-)] vapor lie at 202 and 211 nm, slightly different from those of the neat [Bmim(+)][Tf(2)N(-)] thin film and its solution in water. Based on the quantitative determination of the vapor absorption spectra as a function of temperature, the vaporization enthalpies of these ionic liquids vapors were measured and found to be in good agreement with the corresponding literature values. This in situ method opens up a new avenue to study the nature of ionic-liquid vapors and to determine the vaporization enthalpies of ionic liquids.

摘要

离子液体的显著特点在于其可以忽略不计的蒸气压。这种超低蒸气压使得直接对离子液体蒸气进行光谱测量变得困难。实际上,目前还没有离子液体蒸气的电子光谱数据。这一缺陷严重阻碍了对离子液体独特分子结构的基本理解。在此,通过高温光谱技术测量了在蒸馏环境中处于气相的八种离子液体(如 1-丁基-3-甲基咪唑双(三氟甲烷磺酰基)亚胺([Bmim(+)] [Tf(2)N(-)])和 1-乙基-3-甲基咪唑双(全氟乙基磺酰基)亚胺([Emim(+)][beti(-)]))的紫外吸收光谱,以填补这一知识空白。[Bmim(+)] [Tf(2)N(-)]蒸气的两个强吸收峰分别位于 202nm 和 211nm,与纯净的 [Bmim(+)] [Tf(2)N(-)]薄膜及其在水中的溶液略有不同。基于蒸气吸收光谱随温度的定量测定,测量了这些离子液体蒸气的蒸发热,发现与相应的文献值吻合良好。这种原位方法为研究离子液体蒸气的性质和确定离子液体的蒸发热开辟了新的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验