Institut Prisme, MMH, 8 rue Léonard de Vinci, Orléans Cedex 2, France.
Biomech Model Mechanobiol. 2011 Feb;10(1):133-45. doi: 10.1007/s10237-010-0222-x. Epub 2010 May 27.
The aim of this paper is to develop a multiscale hierarchical hybrid model based on finite element analysis and neural network computation to link mesoscopic scale (trabecular network level) and macroscopic (whole bone level) to simulate the process of bone remodelling. As whole bone simulation, including the 3D reconstruction of trabecular level bone, is time consuming, finite element calculation is only performed at the macroscopic level, whilst trained neural networks are employed as numerical substitutes for the finite element code needed for the mesoscale prediction. The bone mechanical properties are updated at the macroscopic scale depending on the morphological and mechanical adaptation at the mesoscopic scale computed by the trained neural network. The digital image-based modelling technique using μ-CT and voxel finite element analysis is used to capture volume elements representative of 2 mm³ at the mesoscale level of the femoral head. The input data for the artificial neural network are a set of bone material parameters, boundary conditions and the applied stress. The output data are the updated bone properties and some trabecular bone factors. The current approach is the first model, to our knowledge, that incorporates both finite element analysis and neural network computation to rapidly simulate multilevel bone adaptation.
本文旨在开发一种基于有限元分析和神经网络计算的多尺度层次混合模型,将细观尺度(骨小梁网络水平)和宏观尺度(整个骨水平)联系起来,模拟骨重建过程。由于整个骨模拟,包括骨小梁水平的三维重建,非常耗时,因此仅在宏观尺度上进行有限元计算,而训练好的神经网络则被用作有限元代码的数值替代,以进行细观预测。根据通过训练好的神经网络计算得出的细观尺度上的形态和力学适应性,在宏观尺度上更新骨力学性能。采用基于μ-CT 的数字图像建模技术和体素有限元分析,在股骨头的细观尺度上捕获具有代表性的 2mm³ 体积元素。人工神经网络的输入数据是一组骨材料参数、边界条件和施加的应力。输出数据是更新后的骨特性和一些小梁骨因子。据我们所知,目前的方法是第一个将有限元分析和神经网络计算结合起来快速模拟多层次骨适应性的模型。