Ames Laboratory-DOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
Inorg Chem. 2009 Jul 20;48(14):6573-83. doi: 10.1021/ic9004856.
The alkali-metal gold trielides K(3)Au(5)Tr (Tr = In (I), Tl (II)) and Rb(2)Au(3)Tl (III) have been obtained directly from the elements, and their orthorhombic structures determined by single-crystal X-ray diffraction means (I/II: Imma, a = 5.562(1), 5.595(1); b = 19.645(4),19.706(4); c = 8.502(2), 8.430(2) A; Z = 4, respectively; III: Pmma, a = 5.660(1), b = 6.741(1), c = 9.045(2) A, Z = 4). These exhibit zigzag chains of Tr that link puckered sheets (I/II) or chains (III) of gold tetrahedra condensed through shared vertices. The segregation of Au and Tr components is striking relative to the evidently stronger and preferred Au-Tr bonding in neighboring gold- and alkali-metal-poorer triel phases. The close packing of K/Rb (A) about the gold tetrahedra gives each A and Au(4) component 7-10 and 10 neighbors of the other type, respectively. Tight-binding-linear-muffin-tin-orbital-atomic sphere approximation band structure calculations show that the title phases lie near or at electronic pseudogaps. The gold substructure is the dominant feature of the densities of states, with moderately broad 5d(10) features as favored by relativistic effects. Likewise, crystal orbital Hamilton population results indicate optimization of Au-Au bonding at the expense of the stronger heteroatomic Au-Tr interactions. Stabilization of these unusual structures appears to follow in part from the presence of numerous short and individually weak A-Au interactions, as manifested by appreciable mixing of s, p, and d valence orbitals on A into network bonding states, Au 5d in particular. These and related phases define a family of Au(4)-based phases with particularly low e/a values of 1.2 to approximately 2.3 (over all atoms, omitting Au 5d), closely related to the cubic Laves-type structures. The same region also contains Tr-richer tunnel and network structures with relatively fewer cations that also appear to be dominated by Au-Au and Au-Tr bonding.
碱金属金 trielides K(3)Au(5)Tr (Tr = In (I), Tl (II)) 和 Rb(2)Au(3)Tl (III) 已直接从元素中获得,并通过单晶 X 射线衍射手段确定了其正交结构(I/II:Imma,a = 5.562(1),5.595(1);b = 19.645(4),19.706(4);c = 8.502(2),8.430(2) A;Z = 4,分别;III:Pmma,a = 5.660(1),b = 6.741(1),c = 9.045(2) A,Z = 4)。这些化合物表现为 Tr 的之字形链,连接扭曲的片层(I/II)或通过共享顶点凝聚的金四面体链(III)。Au 和 Tr 成分的分离相对于相邻的金和碱金属贫 triel 相中明显更强和更优选的 Au-Tr 键合引人注目。K/Rb (A) 紧密堆积在金四面体周围,使每个 A 和 Au(4)成分分别具有 7-10 个和 10 个其他类型的相邻原子。紧束缚-线性- muffin- tin-轨道-原子球近似能带结构计算表明,标题相位于或接近电子赝隙附近。金亚结构是态密度的主要特征,相对论效应有利于中等宽度的 5d(10)特征。同样,晶体轨道哈密顿人口结果表明,Au-Au 键合的优化是以牺牲更强的异原子 Au-Tr 相互作用为代价的。这些不寻常结构的稳定性似乎部分归因于大量短而单独较弱的 A-Au 相互作用的存在,这表现为 A 的 s、p 和 d 价轨道明显混合到网络键合态中,特别是 Au 5d。这些和相关的相定义了一组具有特别低的 e/a 值 1.2 至约 2.3(所有原子,不包括 Au 5d)的基于 Au(4)的相,与立方 Laves 型结构密切相关。同一区域还包含 Tr 更丰富的隧道和网络结构,其中阳离子相对较少,似乎也主要由 Au-Au 和 Au-Tr 键合主导。