Suppr超能文献

在时间响应曲线变化的情况下,对 phMRI 信号幅度进行稳健、无偏的广义线性模型估计。

Robust, unbiased general linear model estimation of phMRI signal amplitude in the presence of variation in the temporal response profile.

机构信息

P.A.I.N. Group, McLean Hospital, Harvard Medical School, Belmont, Massachusetts 02478, USA.

出版信息

J Magn Reson Imaging. 2010 Jun;31(6):1445-57. doi: 10.1002/jmri.22180.

Abstract

PURPOSE

To determine a simple yet robust method to generate parsimonious design matrices that accurately estimate the "pharmacological MRI" (phMRI) response amplitude in the presence of both confounding signals and variability in temporal profile. Variability in the temporal response profile of phMRI time series data is often observed. If not properly accounted for, this variation can result in inaccurate and unevenly biased signal amplitude estimates when modeled within a general linear model (GLM) framework.

MATERIALS AND METHODS

The approach uses a low-rank singular value decomposition (SVD) approximation to a set of vectors capturing anticipated variations of no interest around the signal model to generate additional regressors for the design matrix. The method is demonstrated for both plateau and bolus type phMRI response profiles in the presence of variation in signal onset and/or shape, and applied to an in vivo blood oxygenation level-dependent (BOLD) phMRI study of buprenorphine in healthy human subjects.

RESULTS

In general, 2-3 additional regressors, capturing >75% of the anticipated variance, resulted in robust and unbiased signal amplitude estimates in the presence of substantial variability.

CONCLUSION

This method provides a simple and flexible means to provide robust phMRI amplitude estimates within a GLM framework.

摘要

目的

确定一种简单而强大的方法,以生成简约的设计矩阵,在存在混杂信号和时间轮廓变化的情况下准确估计“药理学 MRI”(phMRI)响应幅度。phMRI 时间序列数据的时间响应轮廓通常会发生变化。如果在一般线性模型(GLM)框架内建模时没有正确考虑到这种变化,那么当模型化时,这可能会导致信号幅度估计不准确和不均匀地有偏差。

材料和方法

该方法使用一组捕获围绕信号模型的预期无兴趣变化的向量的低秩奇异值分解(SVD)逼近,为设计矩阵生成附加回归量。该方法展示了在信号起始和/或形状变化的情况下,平台和弹丸型 phMRI 响应轮廓的情况,并应用于健康人体受试者中丁丙诺啡的血氧水平依赖(BOLD)phMRI 研究。

结果

通常,2-3 个附加的回归量,捕获了>75%的预期方差,在存在大量变化的情况下,产生了稳健和无偏的信号幅度估计。

结论

该方法为 GLM 框架内提供了一种简单而灵活的方法,可提供稳健的 phMRI 幅度估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验