Division of Infectious Diseases, Department of Medicine, and Department of Microbiology, Global Health and Emerging Pathogens Institute, Mount Sinai School of Medicine, New York, New York 10029-6574, USA.
J Virol. 2010 Aug;84(16):7961-9. doi: 10.1128/JVI.00754-10. Epub 2010 Jun 2.
Several members of the human APOBEC3 family of cytidine deaminases can potently restrict retroviruses such as HIV-1. The single-domain APOBEC3H (A3H) is encoded by four haplotypes, of which only A3H haplotype II-RDD (hapII-RDD) restricts HIV-1 efficiently. The goal of this study was to elucidate the mechanisms underlying the differences in antiviral activity among A3H haplotypes. The naturally occurring A3H hapI-GKE and hapII-RDD variants differ at three amino acid positions. A panel of six site-directed mutants containing combinations of the three variable residues was used to determine A3H protein expression, requirements of A3H virion incorporation, and A3H-Gag interactions. The catalytic activity of each A3H protein was assessed directly by using an Escherichia coli mutator assay. We found that the incorporation efficiencies of A3H variants into HIV-1 virions were comparable despite major differences in cellular expression. An assessment of the enzymes' catalytic activities showed that the deaminase activity of each A3H variant correlated with protein expression, suggesting similar enzymatic efficiencies. Surprisingly, virion incorporation experiments using Gag deletion mutants demonstrated that A3H haplotypes interacted with different Gag regions. A3H hapII-RDD associated with nucleocapsid in an RNA-dependent manner, whereas A3H hapI-GKE associated with the C-terminal part of matrix and the N-terminal capsid domain. Our results show that the A3H hapII-RDD interaction with nucleocapsid is critical for its antiviral activity and that the inability of A3H hapI-GKE to interact with nucleocapsid underlies its limited antiviral potential. Thus, the antiviral activity of A3H haplotypes is determined by its incorporation into the viral core, in proximity to the reverse transcription complex.
人类 APOBEC3 家族的几种胞嘧啶脱氨酶能够有效地限制逆转录病毒,如 HIV-1。单一结构域的 APOBEC3H (A3H) 由四种单倍型编码,其中只有 A3H 单倍型 II-RDD (hapII-RDD) 能够有效地限制 HIV-1。本研究的目的是阐明 A3H 单倍型之间抗病毒活性差异的机制。天然存在的 A3H hapI-GKE 和 hapII-RDD 变体在三个氨基酸位置上有所不同。一组包含三个可变残基组合的六个定点突变体被用来确定 A3H 蛋白的表达、A3H 病毒粒子的掺入要求以及 A3H-Gag 相互作用。每个 A3H 蛋白的催化活性都直接通过使用大肠杆菌突变体测定法来评估。我们发现,尽管细胞表达存在显著差异,但 A3H 变体的掺入效率在 HIV-1 病毒粒子中相当。对酶的催化活性的评估表明,每个 A3H 变体的脱氨酶活性与其蛋白表达相关,表明具有相似的酶效率。令人惊讶的是,使用 Gag 缺失突变体的病毒粒子掺入实验表明,A3H 单倍型与不同的 Gag 区域相互作用。A3H hapII-RDD 以 RNA 依赖的方式与核衣壳结合,而 A3H hapI-GKE 与基质的 C 端部分和 N 端衣壳域结合。我们的结果表明,A3H hapII-RDD 与核衣壳的相互作用对于其抗病毒活性至关重要,而 A3H hapI-GKE 无法与核衣壳相互作用是其抗病毒潜力有限的基础。因此,A3H 单倍型的抗病毒活性取决于其与病毒核心的结合,而这种结合接近逆转录复合物。