Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755-3844, USA.
Annu Rev Cell Dev Biol. 2010;26:115-36. doi: 10.1146/annurev-cellbio-100109-104131.
Although fusion mechanisms are highly conserved in evolution and among organelles of the exocytic and endocytic pathways, yeast vacuole homotypic fusion offers unique technical advantages: excellent genetics, clear organelle cytology, in vitro colorimetric fusion assays, and reconstitution of fusion from all-pure components, including a Rab GTPase, HOPS (homotypic fusion and vacuole protein sorting complex), four SNAREs [soluble N-ethylmaleimide-sensitive factor (NSF) attachment receptors] that snare (bind) each other, SNARE-complex disassembly chaperones, and vacuolar lipids. Vacuole fusion studies offer paradigms of the interdependence of lipids and fusion proteins to assemble a fusion microdomain, distinct lipid functions, SNARE complex proofreading through the synergy between HOPS and the SNARE disassembly chaperones, and the role of each fusion protein in promoting radical bilayer restructuring for fusion without lysis.
尽管融合机制在进化过程中以及在胞吐和胞吞途径的细胞器中高度保守,但酵母液泡同源融合提供了独特的技术优势:出色的遗传学、清晰的细胞器细胞学、体外比色融合测定以及使用所有纯成分(包括 Rab GTPase、HOPS(同源融合和液泡蛋白分选复合物)、四个 SNARE [可溶性 N-乙基马来酰亚胺敏感因子 (NSF) 附着受体] 来捕获(结合)彼此、SNARE 复合物解组装伴侣以及液泡脂质)进行重组融合。液泡融合研究为脂质和融合蛋白相互依赖以组装融合微域、不同脂质功能、通过 HOPS 和 SNARE 解组装伴侣之间的协同作用进行 SNARE 复合物校对以及每个融合蛋白在促进激进双层重构以实现融合而不裂解的作用提供了范例。