Suppr超能文献

一种使用中空纤维模块从冷冻保存血液中去除 CPA 的稳态传质模型。

A steady-state mass transfer model of removing CPAs from cryopreserved blood with hollow fiber modules.

作者信息

Ding Weiping, Zhou Xiaoming, Heimfeld Shelly, Reems Jo-Anna, Gao Dayong

机构信息

Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA.

出版信息

J Biomech Eng. 2010 Jan;132(1):011002. doi: 10.1115/1.4000110.

Abstract

Hollow fiber modules are commonly used to conveniently and efficiently remove cryoprotective agents (CPAs) from cryopreserved cell suspensions. In this paper, a steady-state model coupling mass transfers across cell and hollow fiber membranes is theoretically developed to evaluate the removal of CPAs from cryopreserved blood using hollow fiber modules. This steady-state model complements the unsteady-state model, which was presented in our previous study. The steady-state model, unlike the unsteady-state model, can be used to evaluate the effect of ultrafiltration flow rates on the clearance of CPAs. The steady-state model is validated by experimental results, and then is compared with the unsteady-state model. Using the steady-state model, the effects of ultrafiltration flow rates, NaCl concentrations in dialysate, blood flow rates and dialysate flow rates on CPA concentration variation and cell volume response are investigated in detail. According to the simulative results, the osmotic damage of red blood cells can easily be reduced by increasing ultrafiltration flow rates, increasing NaCl concentrations in dialysate, increasing blood flow rates, or decreasing dialysate flow rates.

摘要

中空纤维模块通常用于方便、高效地从冷冻保存的细胞悬液中去除冷冻保护剂(CPA)。本文从理论上建立了一个耦合细胞与中空纤维膜传质的稳态模型,以评估使用中空纤维模块从冷冻保存的血液中去除CPA的效果。该稳态模型补充了我们之前研究中提出的非稳态模型。与非稳态模型不同,稳态模型可用于评估超滤流速对CPA清除率的影响。通过实验结果对稳态模型进行了验证,并与非稳态模型进行了比较。利用稳态模型,详细研究了超滤流速、透析液中NaCl浓度、血流速度和透析液流速对CPA浓度变化和细胞体积响应的影响。根据模拟结果,通过提高超滤流速、提高透析液中NaCl浓度、提高血流速度或降低透析液流速,可以很容易地降低红细胞的渗透损伤。

相似文献

3
Theoretical optimization of the removal of cryoprotective agents using a dilution-filtration system.
Biomed Eng Online. 2014 Aug 21;13:120. doi: 10.1186/1475-925X-13-120.
4
A dilution-filtration system for removing cryoprotective agents.
J Biomech Eng. 2011 Feb;133(2):021007. doi: 10.1115/1.4003317.
5
Effect of the polydispersity of RBCs on the recovery rate of RBCs during the removal of CPAs.
Comput Math Methods Med. 2014;2014:792302. doi: 10.1155/2014/792302. Epub 2014 Dec 15.
6
Hydrogel Microfiber Encapsulation Enhances Cryopreservation of Human Red Blood Cells with Low Concentrations of Glycerol.
Biopreserv Biobank. 2020 Jun;18(3):228-234. doi: 10.1089/bio.2020.0003. Epub 2020 Apr 21.
8
Comparison of dilute and nondilute osmotic equilibrium models for erythrocytes.
Cryobiology. 2022 Dec;109:72-79. doi: 10.1016/j.cryobiol.2022.09.001. Epub 2022 Sep 18.
9
Polyampholytes as cryoprotective agents for mammalian cell cryopreservation.
Cell Transplant. 2010;19(6):691-9. doi: 10.3727/096368910X508780. Epub 2010 Jun 3.
10
Hematopoietic SCT with cryopreserved grafts: adverse reactions after transplantation and cryoprotectant removal before infusion.
Bone Marrow Transplant. 2014 Apr;49(4):469-76. doi: 10.1038/bmt.2013.152. Epub 2013 Sep 30.

引用本文的文献

1
Incorporate delivery, warming and washing methods into efficient cryopreservation.
Front Bioeng Biotechnol. 2023 Jun 15;11:1215591. doi: 10.3389/fbioe.2023.1215591. eCollection 2023.
2
Cryopreservation of Hematopoietic Stem Cells: Emerging Assays, Cryoprotectant Agents, and Technology to Improve Outcomes.
Transfus Med Hemother. 2019 Jun;46(3):188-196. doi: 10.1159/000496068. Epub 2019 Feb 5.
3
Effect of the polydispersity of RBCs on the recovery rate of RBCs during the removal of CPAs.
Comput Math Methods Med. 2014;2014:792302. doi: 10.1155/2014/792302. Epub 2014 Dec 15.
4
Theoretical optimization of the removal of cryoprotective agents using a dilution-filtration system.
Biomed Eng Online. 2014 Aug 21;13:120. doi: 10.1186/1475-925X-13-120.
5
Hematopoietic SCT with cryopreserved grafts: adverse reactions after transplantation and cryoprotectant removal before infusion.
Bone Marrow Transplant. 2014 Apr;49(4):469-76. doi: 10.1038/bmt.2013.152. Epub 2013 Sep 30.

本文引用的文献

1
Water- and cryoprotectant-permeability of mature and immature oocytes in the medaka (Oryzias latipes).
Cryobiology. 2005 Feb;50(1):93-102. doi: 10.1016/j.cryobiol.2004.11.002. Epub 2005 Jan 20.
3
The role of depletion of dimethyl sulfoxide before autografting: on hematologic recovery, side effects, and toxicity.
Biol Blood Marrow Transplant. 2004 Feb;10(2):135-41. doi: 10.1016/j.bbmt.2003.09.016.
4
OSMOTIC PROPERTIES OF HUMAN RED CELLS.
J Gen Physiol. 1964 Sep;48(1):79-94. doi: 10.1085/jgp.48.1.79.
5
Thermodynamic analysis of the permeability of biological membranes to non-electrolytes.
Biochim Biophys Acta. 1958 Feb;27(2):229-46. doi: 10.1016/0006-3002(58)90330-5.
7
Use of hollow fiber membrane filtration for the removal of DMSO from platelet concentrates.
Platelets. 2003 May;14(3):131-7. doi: 10.1080/0953710031000092811.
8
Measurement of the chondrocyte membrane permeability to Me2SO, glycerol and 1,2-propanediol.
Med Eng Phys. 2003 Sep;25(7):573-9. doi: 10.1016/s1350-4533(03)00073-0.
10
Canine RBC osmotic tolerance and membrane permeability.
Cryobiology. 2002 Jun;44(3):258-68. doi: 10.1016/s0011-2240(02)00032-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验