Department of Chemistry and Institute for Shock Physics, Washington State University, Pullman, Washington 99164-2816, USA.
J Chem Phys. 2010 Jun 7;132(21):214501. doi: 10.1063/1.3429986.
We have studied the pressure-induced phase transition and chemical decomposition of hydrogen peroxide and its mixtures with water to 50 GPa, using confocal micro-Raman and synchrotron x-ray diffractions. The x-ray results indicate that pure hydrogen peroxide crystallizes into a tetragonal structure (P4(1)2(1)2), the same structure previously found in 82.7% H(2)O(2) at high pressures and in pure H(2)O(2) at low temperatures. The tetragonal phase (H(2)O(2)-I) is stable to 15 GPa, above which transforms into an orthorhombic structure (H(2)O(2)-II) over a relatively large pressure range between 13 and 18 GPa. Inferring from the splitting of the nu(s)(O-O) stretching mode, the phase I-to-II transition pressure decreases in diluted H(2)O(2) to around 7 GPa for the 41.7% H(2)O(2) and 3 GPa for the 9.5%. Above 18 GPa H(2)O(2)-II gradually decomposes to a mixture of H(2)O and O(2), which completes at around 40 GPa for pure and 45 GPa for the 9.5% H(2)O(2). Upon pressure unloading, H(2)O(2) also decomposes to H(2)O and O(2) mixtures across the melts, occurring at 2.5 GPa for pure and 1.5 GPa for the 9.5% mixture. At H(2)O(2) concentrations below 20%, decomposed mixtures form oxygen hydrate clathrates at around 0.8 GPa--just after H(2)O melts. The compression data of pure H(2)O(2) and the stability data of the mixtures seem to indicate that the high-pressure decomposition is likely due to the pressure-induced densification, whereas the low-pressure decomposition is related to the heterogeneous nucleation process associated with H(2)O(2) melting.
我们使用共聚焦显微拉曼和同步辐射 X 射线衍射研究了过氧化氢及其与水的混合物在 50GPa 下的压力诱导相变和化学分解。X 射线结果表明,纯过氧化氢结晶为四方结构(P4(1)2(1)2),与以前在 82.7%H(2)O(2)的高压下和纯 H(2)O(2)的低温下发现的结构相同。四方相(H(2)O(2)-I)在 15GPa 以下稳定,在 13 到 18GPa 之间的较大压力范围内,它会转变为正交相(H(2)O(2)-II)。根据 nu(s)(O-O)伸缩模式的分裂推断,在稀释的 H(2)O(2)中,I 相到 II 相的转变压力降低到 41.7%的 H(2)O(2)约为 7GPa,而 9.5%的 H(2)O(2)约为 3GPa。在 18GPa 以上,H(2)O(2)-II 逐渐分解为 H(2)O 和 O(2)的混合物,在纯 H(2)O(2)中在约 40GPa 时完成,在 9.5%的 H(2)O(2)中在约 45GPa 时完成。在压力卸载时,H(2)O(2)也会通过熔体分解为 H(2)O 和 O(2)的混合物,在纯 H(2)O(2)中在 2.5GPa 时发生,在 9.5%的混合物中在 1.5GPa 时发生。在 H(2)O(2)浓度低于 20%的情况下,分解混合物在约 0.8GPa 时形成氧水合物笼形物--就在 H(2)O 熔体之后。纯 H(2)O(2)的压缩数据和混合物的稳定性数据似乎表明,高压分解可能是由于压力诱导的致密化,而低压分解则与与 H(2)O(2)熔化相关的非均匀成核过程有关。