Suppr超能文献

过氧化氢及其水混合物在高压下的相转变和化学分解。

Phase transition and chemical decomposition of hydrogen peroxide and its water mixtures under high pressures.

机构信息

Department of Chemistry and Institute for Shock Physics, Washington State University, Pullman, Washington 99164-2816, USA.

出版信息

J Chem Phys. 2010 Jun 7;132(21):214501. doi: 10.1063/1.3429986.

Abstract

We have studied the pressure-induced phase transition and chemical decomposition of hydrogen peroxide and its mixtures with water to 50 GPa, using confocal micro-Raman and synchrotron x-ray diffractions. The x-ray results indicate that pure hydrogen peroxide crystallizes into a tetragonal structure (P4(1)2(1)2), the same structure previously found in 82.7% H(2)O(2) at high pressures and in pure H(2)O(2) at low temperatures. The tetragonal phase (H(2)O(2)-I) is stable to 15 GPa, above which transforms into an orthorhombic structure (H(2)O(2)-II) over a relatively large pressure range between 13 and 18 GPa. Inferring from the splitting of the nu(s)(O-O) stretching mode, the phase I-to-II transition pressure decreases in diluted H(2)O(2) to around 7 GPa for the 41.7% H(2)O(2) and 3 GPa for the 9.5%. Above 18 GPa H(2)O(2)-II gradually decomposes to a mixture of H(2)O and O(2), which completes at around 40 GPa for pure and 45 GPa for the 9.5% H(2)O(2). Upon pressure unloading, H(2)O(2) also decomposes to H(2)O and O(2) mixtures across the melts, occurring at 2.5 GPa for pure and 1.5 GPa for the 9.5% mixture. At H(2)O(2) concentrations below 20%, decomposed mixtures form oxygen hydrate clathrates at around 0.8 GPa--just after H(2)O melts. The compression data of pure H(2)O(2) and the stability data of the mixtures seem to indicate that the high-pressure decomposition is likely due to the pressure-induced densification, whereas the low-pressure decomposition is related to the heterogeneous nucleation process associated with H(2)O(2) melting.

摘要

我们使用共聚焦显微拉曼和同步辐射 X 射线衍射研究了过氧化氢及其与水的混合物在 50GPa 下的压力诱导相变和化学分解。X 射线结果表明,纯过氧化氢结晶为四方结构(P4(1)2(1)2),与以前在 82.7%H(2)O(2)的高压下和纯 H(2)O(2)的低温下发现的结构相同。四方相(H(2)O(2)-I)在 15GPa 以下稳定,在 13 到 18GPa 之间的较大压力范围内,它会转变为正交相(H(2)O(2)-II)。根据 nu(s)(O-O)伸缩模式的分裂推断,在稀释的 H(2)O(2)中,I 相到 II 相的转变压力降低到 41.7%的 H(2)O(2)约为 7GPa,而 9.5%的 H(2)O(2)约为 3GPa。在 18GPa 以上,H(2)O(2)-II 逐渐分解为 H(2)O 和 O(2)的混合物,在纯 H(2)O(2)中在约 40GPa 时完成,在 9.5%的 H(2)O(2)中在约 45GPa 时完成。在压力卸载时,H(2)O(2)也会通过熔体分解为 H(2)O 和 O(2)的混合物,在纯 H(2)O(2)中在 2.5GPa 时发生,在 9.5%的混合物中在 1.5GPa 时发生。在 H(2)O(2)浓度低于 20%的情况下,分解混合物在约 0.8GPa 时形成氧水合物笼形物--就在 H(2)O 熔体之后。纯 H(2)O(2)的压缩数据和混合物的稳定性数据似乎表明,高压分解可能是由于压力诱导的致密化,而低压分解则与与 H(2)O(2)熔化相关的非均匀成核过程有关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验