Suppr超能文献

临床试验中二项复合结局组成部分间的异质性检验。

Testing for heterogeneity among the components of a binary composite outcome in a clinical trial.

机构信息

Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada.

出版信息

BMC Med Res Methodol. 2010 Jun 7;10:49. doi: 10.1186/1471-2288-10-49.

Abstract

BACKGROUND

Investigators designing clinical trials often use composite outcomes to overcome many statistical issues. Trialists want to maximize power to show a statistically significant treatment effect and avoid inflation of Type I error rate due to evaluation of multiple individual clinical outcomes. However, if the treatment effect is not similar among the components of this composite outcome, we are left not knowing how to interpret the treatment effect on the composite itself. Given significant heterogeneity among these components, a composite outcome may be judged as being invalid or un-interpretable for estimation of the treatment effect. This paper compares the power of different tests to detect heterogeneity of treatment effect across components of a composite binary outcome.

METHODS

Simulations were done comparing four different models commonly used to analyze correlated binary data. These models included: logistic regression for ignoring correlation, logistic regression weighted by the intra cluster correlation coefficient, population average logistic regression using generalized estimating equations (GEE), and random effects logistic regression.

RESULTS

We found that the population average model based on generalized estimating equations (GEE) had the greatest power across most scenarios. Adequate power to detect possible composite heterogeneity or variation between treatment effects of individual components of a composite outcome was seen when the power for detecting the main study treatment effect for the composite outcome was also reasonably high.

CONCLUSIONS

It is recommended that authors report tests of composite heterogeneity for composite outcomes and that this accompany the publication of the statistically significant results of the main effect on the composite along with individual components of composite outcomes.

摘要

背景

设计临床试验的研究人员经常使用复合结局来克服许多统计学问题。研究人员希望最大限度地提高显示统计学上显著治疗效果的能力,并避免由于评估多个个体临床结局而导致的 I 型错误率膨胀。然而,如果治疗效果在复合结局的各个组成部分之间不相似,我们就不知道如何解释复合结局本身的治疗效果。鉴于这些组成部分之间存在显著的异质性,复合结局可能被判断为无效或无法解释治疗效果的估计。本文比较了不同检验方法检测复合二分类结局各组成部分之间治疗效果异质性的功效。

方法

通过模拟比较了四种常用于分析相关二分类数据的常用模型。这些模型包括:忽略相关性的逻辑回归、加权于组内相关系数的逻辑回归、使用广义估计方程(GEE)的总体平均逻辑回归和随机效应逻辑回归。

结果

我们发现,基于广义估计方程(GEE)的总体平均模型在大多数情况下具有最大的功效。当复合结局的主要研究治疗效果的功效也相当高时,检测复合结局各个组成部分之间可能存在的复合异质性或治疗效果变化的充分功效得以实现。

结论

建议作者报告复合结局的复合异质性检验,并将其与复合结局的主要效果以及复合结局的各个组成部分的统计学显著结果一起发表。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a600/2909251/12411f4c59ab/1471-2288-10-49-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验