Suppr超能文献

真菌出土:森林土壤中木质纤维素和几丁质分解酶的转录本编码。

Fungi unearthed: transcripts encoding lignocellulolytic and chitinolytic enzymes in forest soil.

机构信息

Unité de Biologie Animale et Microbienne, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium.

出版信息

PLoS One. 2010 Jun 4;5(6):e10971. doi: 10.1371/journal.pone.0010971.

Abstract

BACKGROUND

Fungi are the main organisms responsible for the degradation of biopolymers such as lignin, cellulose, hemicellulose, and chitin in forest ecosystems. Soil surveys largely target fungal diversity, paying less attention to fungal activity.

METHODOLOGY/PRINCIPAL FINDINGS: Here we have focused on the organic horizon of a hardwood forest dominated by sugar maple that spreads widely across Eastern North America. The sampling site included three plots receiving normal atmospheric nitrogen deposition and three that received an extra 3 g nitrogen m(2) y(1) in form of sodium nitrate pellets since 1994, which led to increased accumulation of organic matter in the soil. Our aim was to assess, in samples taken from all six plots, transcript-level expression of fungal genes encoding lignocellulolytic and chitinolytic enzymes. For this we collected RNA from the forest soil, reverse-transcribed it, and amplified cDNAs of interest, using both published primer pairs as well as 23 newly developed ones. We thus detected transcript-level expression of 234 genes putatively encoding 26 different groups of fungal enzymes, notably major ligninolytic and diverse aromatic-oxidizing enzymes, various cellulose- and hemicellulose-degrading glycoside hydrolases and carbohydrate esterases, enzymes involved in chitin breakdown, N-acetylglucosamine metabolism, and cell wall degradation. Among the genes identified, 125 are homologous to known ascomycete genes and 105 to basidiomycete genes. Transcripts corresponding to all 26 enzyme groups were detected in both control and nitrogen-supplemented plots.

CONCLUSIONS/SIGNIFICANCE: Many of these enzyme groups are known to be important in soil turnover processes, but the contribution of some is probably underestimated. Our data highlight the importance of ascomycetes, as well as basidiomycetes, in important biogeochemical cycles. In the nitrogen-supplemented plots, we have detected no transcript-level gap likely to explain the observed increased carbon storage, which is more likely due to community changes and perhaps transcriptional and/or post-transcriptional down-regulation of relevant genes.

摘要

背景

真菌是负责森林生态系统中生物聚合物如木质素、纤维素、半纤维素和几丁质降解的主要生物。土壤调查主要针对真菌多样性,而对真菌活性的关注较少。

方法/主要发现:在这里,我们专注于由糖枫主导的硬木林的有机层,该树种广泛分布于北美东部。采样点包括三个接受正常大气氮沉降的地块和三个自 1994 年以来接受额外 3 克/平方米/年硝酸钠丸形式氮沉降的地块,这导致土壤中有机质的积累增加。我们的目的是评估来自所有六个地块的样本中,编码木质纤维素和几丁质分解酶的真菌基因的转录水平表达。为此,我们从森林土壤中收集 RNA,进行反转录,并使用已发表的引物对以及 23 个新开发的引物对,扩增感兴趣的 cDNA。因此,我们检测到了 234 个假定编码 26 个不同真菌酶组的基因的转录水平表达,特别是主要木质素分解酶和各种芳香族氧化酶、各种纤维素和半纤维素降解糖苷水解酶和糖基酯酶、参与几丁质分解、N-乙酰葡萄糖胺代谢和细胞壁降解的酶。在所鉴定的基因中,有 125 个与已知的子囊菌基因同源,105 个与担子菌基因同源。在对照和氮补充地块中都检测到了所有 26 个酶组的转录物。

结论/意义:许多这些酶组在土壤转化过程中是重要的,但有些可能被低估了。我们的数据突出了子囊菌和担子菌在重要生物地球化学循环中的重要性。在氮补充地块中,我们没有检测到可能解释观察到的碳储存增加的转录水平差距,这更可能是由于群落变化,以及可能的相关基因的转录和/或转录后下调。

相似文献

1
Fungi unearthed: transcripts encoding lignocellulolytic and chitinolytic enzymes in forest soil.
PLoS One. 2010 Jun 4;5(6):e10971. doi: 10.1371/journal.pone.0010971.
2
Microbial mechanisms mediating increased soil C storage under elevated atmospheric N deposition.
Appl Environ Microbiol. 2013 Feb;79(4):1191-9. doi: 10.1128/AEM.03156-12. Epub 2012 Dec 7.
4
Polysaccharide Degradation Capability of Actinomycetales Soil Isolates from a Semiarid Grassland of the Colorado Plateau.
Appl Environ Microbiol. 2017 Mar 2;83(6). doi: 10.1128/AEM.03020-16. Print 2017 Mar 15.
5
Fungal lysis by a soil bacterium fermenting cellulose.
Environ Microbiol. 2015 Aug;17(8):2618-27. doi: 10.1111/1462-2920.12495. Epub 2014 May 25.
8
Feed in summer, rest in winter: microbial carbon utilization in forest topsoil.
Microbiome. 2017 Sep 18;5(1):122. doi: 10.1186/s40168-017-0340-0.
9
Multi-omic Analyses of Extensively Decayed Pinus contorta Reveal Expression of a Diverse Array of Lignocellulose-Degrading Enzymes.
Appl Environ Microbiol. 2018 Oct 1;84(20). doi: 10.1128/AEM.01133-18. Print 2018 Oct 15.

引用本文的文献

1
Enzymatic degradation of cellulose in soil: A review.
Heliyon. 2024 Jan 3;10(1):e24022. doi: 10.1016/j.heliyon.2024.e24022. eCollection 2024 Jan 15.
5
Historical Nitrogen Deposition and Straw Addition Facilitate the Resistance of Soil Multifunctionality to Drying-Wetting Cycles.
Appl Environ Microbiol. 2019 Apr 4;85(8). doi: 10.1128/AEM.02251-18. Print 2019 Apr 15.
6
Feed in summer, rest in winter: microbial carbon utilization in forest topsoil.
Microbiome. 2017 Sep 18;5(1):122. doi: 10.1186/s40168-017-0340-0.
7
Primer Sets Developed for Functional Genes Reveal Shifts in Functionality of Fungal Community in Soils.
Front Microbiol. 2016 Nov 29;7:1897. doi: 10.3389/fmicb.2016.01897. eCollection 2016.
8
Population, diversity and characteristics of cellulolytic microorganisms from the Indo-Burma Biodiversity hotspot.
Springerplus. 2014 Nov 28;3:700. doi: 10.1186/2193-1801-3-700. eCollection 2014.
9
Characterization of Cellobiose Dehydrogenase from a Biotechnologically Important Cerrena unicolor Strain.
Appl Biochem Biotechnol. 2015 Jul;176(6):1638-58. doi: 10.1007/s12010-015-1667-2. Epub 2015 May 24.
10
Forest floor community metatranscriptomes identify fungal and bacterial responses to N deposition in two maple forests.
Front Microbiol. 2015 Apr 23;6:337. doi: 10.3389/fmicb.2015.00337. eCollection 2015.

本文引用的文献

1
454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity.
New Phytol. 2009 Oct;184(2):449-456. doi: 10.1111/j.1469-8137.2009.03003.x. Epub 2009 Aug 22.
2
Saprotrophic capabilities as functional traits to study functional diversity and resilience of ectomycorrhizal community.
Oecologia. 2009 Oct;161(4):661-4. doi: 10.1007/s00442-009-1434-6. Epub 2009 Aug 15.
3
Ectomycorrhizal fungi and their enzymes in soils: is there enough evidence for their role as facultative soil saprotrophs?
Oecologia. 2009 Oct;161(4):657-60. doi: 10.1007/s00442-009-1433-7. Epub 2009 Aug 14.
4
ClassII peroxidase-encoding genes are present in a phylogenetically wide range of ectomycorrhizal fungi.
ISME J. 2009 Dec;3(12):1387-95. doi: 10.1038/ismej.2009.77. Epub 2009 Jul 2.
5
Molecular characterization of aromatic peroxygenase from Agrocybe aegerita.
Appl Microbiol Biotechnol. 2009 Oct;84(5):885-97. doi: 10.1007/s00253-009-2000-1. Epub 2009 May 12.
7
The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics.
Nucleic Acids Res. 2009 Jan;37(Database issue):D233-8. doi: 10.1093/nar/gkn663. Epub 2008 Oct 5.
8
Gene transcription in Lactarius quietus-Quercus petraea ectomycorrhizas from a forest soil.
Appl Environ Microbiol. 2008 Nov;74(21):6598-605. doi: 10.1128/AEM.00584-08. Epub 2008 Sep 12.
10
Isolation of fungal cellobiohydrolase I genes from sporocarps and forest soils by PCR.
Appl Environ Microbiol. 2008 Jun;74(11):3481-9. doi: 10.1128/AEM.02893-07. Epub 2008 Apr 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验