Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027, USA.
Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11358-63. doi: 10.1073/pnas.0911328107. Epub 2010 Jun 3.
Through evolution, nature has produced exquisite nanometric structures, with features unrealized in the most advanced man-made devices. Type IV pili (Tfp) represent such a structure: 6-nm-wide retractable filamentous appendages found in many bacteria, including human pathogens. Whereas the structure of Neisseria gonorrhoeae Tfp has been defined by conventional structural techniques, it remains difficult to explain the wide spectrum of functions associated with Tfp. Here we uncover a previously undescribed force-induced quaternary structure of the N. gonorrhoeae Tfp. By using a combination of optical and magnetic tweezers, atomic force microscopy, and molecular combing to apply forces on purified Tfp, we demonstrate that Tfp subjected to approximately 100 pN of force will transition into a new conformation. The new structure is roughly 3 times longer and 40% narrower than the original structure. Upon release of the force, the Tfp fiber regains its original form, indicating a reversible transition. Equally important, we show that the force-induced conformation exposes hidden epitopes previously buried in the Tfp fiber. We postulate that this transition provides a means for N. gonorrhoeae to maintain attachment to its host while withstanding intermittent forces encountered in the environment. Our findings demonstrate the need to reassess our understanding of Tfp dynamics and functions. They could also explain the structural diversity of other helical polymers while presenting a unique mechanism for polymer elongation and exemplifying the extreme structural plasticity of biological polymers.
通过进化,大自然产生了精致的纳米结构,其特征是在最先进的人造设备中无法实现的。IV 型菌毛(Tfp)就是这样一种结构:在许多细菌中发现的 6nm 宽的可伸缩丝状附属物,包括人类病原体。虽然淋病奈瑟菌 Tfp 的结构已经通过常规结构技术来定义,但仍然难以解释与 Tfp 相关的广泛功能。在这里,我们揭示了一种以前未被描述的淋病奈瑟菌 Tfp 力诱导的四级结构。通过结合使用光学和磁镊、原子力显微镜和分子梳理来对纯化的 Tfp 施加力,我们证明了 Tfp 在受到约 100pN 的力时将转变为新的构象。新结构比原始结构大约长 3 倍,窄 40%。当力释放时,Tfp 纤维恢复到原来的形状,表明这是一种可逆的转变。同样重要的是,我们表明力诱导的构象暴露了以前隐藏在 Tfp 纤维中的表位。我们推测,这种转变为淋病奈瑟菌提供了一种在环境中遇到间歇性力时保持与其宿主附着的方法。我们的发现表明需要重新评估我们对 Tfp 动力学和功能的理解。它们还可以解释其他螺旋聚合物的结构多样性,同时提供了一种用于聚合物伸长的独特机制,并例证了生物聚合物的极端结构可塑性。