Suppr超能文献

脊髓中聚焦的突触输入和弥散的神经调制之间的相互作用。

Interactions between focused synaptic inputs and diffuse neuromodulation in the spinal cord.

机构信息

Department of Physiology, Northwestern University Medical School, Chicago, Illinois, USA.

出版信息

Ann N Y Acad Sci. 2010 Jun;1198:35-41. doi: 10.1111/j.1749-6632.2010.05430.x.

Abstract

Spinal motoneurons (MNs) amplify synaptic inputs by producing strong dendritic persistent inward currents (PICs), which allow the MN to generate the firing rates and forces necessary for normal behaviors. However, PICs prolong MN depolarization after the initial excitation is removed, tend to "wind-up" with repeated activation and are regulated by a diffuse neuromodulatory system that affects all motor pools. We have shown that PICs are very sensitive to reciprocal inhibition from Ia afferents of antagonist muscles and as a result PIC amplification is related to limb configuration. Because reciprocal inhibition is tightly focused, shared only between strict anatomical antagonists, this system opposes the diffuse effects of the descending neuromodulation that facilitates PICs. Because inhibition appears necessary for PIC control, we hypothesize that Ia inhibition interacts with Ia excitation in a "push-pull" fashion, in which a baseline of simultaneous excitation and inhibition allows depolarization to occur via both excitation and disinhibition (and vice versa for hyperpolarization). Push-pull control appears to mitigate the undesirable affects associated with the PIC while still taking full advantage of PIC amplification.

摘要

脊髓运动神经元 (MNs) 通过产生强的树突持久内向电流 (PICs) 来放大突触输入,这使得 MN 能够产生正常行为所需的发放频率和力。然而,PICs 在初始兴奋去除后延长 MN 的去极化,随着重复激活而倾向于“累积”,并受影响所有运动池的弥散神经调制系统调节。我们已经表明,PICs 对来自拮抗肌 Ia 传入的交互抑制非常敏感,因此 PIC 放大与肢体构型有关。由于交互抑制是严格集中的,仅在严格的解剖学拮抗剂之间共享,因此该系统与促进 PICs 的下行神经调制的弥散效应相反。由于抑制似乎对于 PIC 控制是必需的,我们假设 Ia 抑制与 Ia 兴奋以“推挽”方式相互作用,其中同时存在兴奋和抑制的基线允许通过兴奋和去抑制来发生去极化(反之亦然,用于超极化)。推挽控制似乎减轻了与 PIC 相关的不良影响,同时仍然充分利用了 PIC 放大。

相似文献

1
Interactions between focused synaptic inputs and diffuse neuromodulation in the spinal cord.
Ann N Y Acad Sci. 2010 Jun;1198:35-41. doi: 10.1111/j.1749-6632.2010.05430.x.
2
Movement-related receptive fields of spinal motoneurones with active dendrites.
J Physiol. 2008 Mar 15;586(6):1581-93. doi: 10.1113/jphysiol.2007.149146. Epub 2008 Jan 31.
3
Active properties of motoneurone dendrites: diffuse descending neuromodulation, focused local inhibition.
J Physiol. 2008 Mar 1;586(5):1225-31. doi: 10.1113/jphysiol.2007.145078. Epub 2007 Oct 18.
4
Synaptic integration in motoneurons with hyper-excitable dendrites.
Can J Physiol Pharmacol. 2004 Aug-Sep;82(8-9):549-55. doi: 10.1139/y04-046.
5
Adjustable amplification of synaptic input in the dendrites of spinal motoneurons in vivo.
J Neurosci. 2000 Sep 1;20(17):6734-40. doi: 10.1523/JNEUROSCI.20-17-06734.2000.
6
Persistent inward currents in spinal motoneurons and their influence on human motoneuron firing patterns.
Neuroscientist. 2008 Jun;14(3):264-75. doi: 10.1177/1073858408314986. Epub 2008 Apr 1.
7
Active dendritic integration of inhibitory synaptic inputs in vivo.
J Neurophysiol. 2003 Dec;90(6):3617-24. doi: 10.1152/jn.00521.2003. Epub 2003 Aug 27.
8
Intrinsic electrical properties of spinal motoneurons vary with joint angle.
Nat Neurosci. 2007 Mar;10(3):363-9. doi: 10.1038/nn1852. Epub 2007 Feb 11.
10
Persistent inward currents in motoneuron dendrites: implications for motor output.
Muscle Nerve. 2005 Feb;31(2):135-56. doi: 10.1002/mus.20261.

引用本文的文献

3
Time Course of Alterations in Adult Spinal Motoneuron Properties in the SOD1(G93A) Mouse Model of ALS.
eNeuro. 2021 Mar 22;8(2). doi: 10.1523/ENEURO.0378-20.2021. Print 2021 Mar-Apr.
4
Differences in estimated persistent inward currents between ankle flexors and extensors in humans.
J Neurophysiol. 2020 Aug 1;124(2):525-535. doi: 10.1152/jn.00746.2019. Epub 2020 Jul 15.
5
Vibration attenuates spasm-like activity in humans with spinal cord injury.
J Physiol. 2020 Jul;598(13):2703-2717. doi: 10.1113/JP279478. Epub 2020 Jun 10.
6
Estimates of persistent inward current in human motor neurons during postural sway.
J Neurophysiol. 2019 Nov 1;122(5):2095-2110. doi: 10.1152/jn.00254.2019. Epub 2019 Sep 18.
7
Increased human stretch reflex dynamic sensitivity with height-induced postural threat.
J Physiol. 2018 Nov;596(21):5251-5265. doi: 10.1113/JP276459. Epub 2018 Oct 9.
8
Dopamine: a parallel pathway for the modulation of spinal locomotor networks.
Front Neural Circuits. 2014 Jun 16;8:55. doi: 10.3389/fncir.2014.00055. eCollection 2014.
9
Modulation of human vestibular reflexes with increased postural threat.
J Physiol. 2014 Aug 15;592(16):3671-85. doi: 10.1113/jphysiol.2014.270744. Epub 2014 Jun 27.
10
Frequency-dependent amplification of stretch-evoked excitatory input in spinal motoneurons.
J Neurophysiol. 2012 Aug 1;108(3):753-9. doi: 10.1152/jn.00313.2012. Epub 2012 May 16.

本文引用的文献

1
Dendritic excitability and synaptic plasticity.
Physiol Rev. 2008 Apr;88(2):769-840. doi: 10.1152/physrev.00016.2007.
2
Movement-related receptive fields of spinal motoneurones with active dendrites.
J Physiol. 2008 Mar 15;586(6):1581-93. doi: 10.1113/jphysiol.2007.149146. Epub 2008 Jan 31.
3
Multiple modes of amplification of synaptic inhibition to motoneurons by persistent inward currents.
J Neurophysiol. 2008 Feb;99(2):571-82. doi: 10.1152/jn.00717.2007. Epub 2007 Nov 28.
5
Active properties of motoneurone dendrites: diffuse descending neuromodulation, focused local inhibition.
J Physiol. 2008 Mar 1;586(5):1225-31. doi: 10.1113/jphysiol.2007.145078. Epub 2007 Oct 18.
6
Intrinsic electrical properties of spinal motoneurons vary with joint angle.
Nat Neurosci. 2007 Mar;10(3):363-9. doi: 10.1038/nn1852. Epub 2007 Feb 11.
7
Effect of nonlinear summation of synaptic currents on the input-output properties of spinal motoneurons.
J Neurophysiol. 2005 Nov;94(5):3465-78. doi: 10.1152/jn.00439.2005. Epub 2005 Aug 3.
9
Key mechanisms for setting the input-output gain across the motoneuron pool.
Prog Brain Res. 2004;143:77-95. doi: 10.1016/s0079-6123(03)43008-2.
10
Hyperexcitable dendrites in motoneurons and their neuromodulatory control during motor behavior.
Trends Neurosci. 2003 Dec;26(12):688-95. doi: 10.1016/j.tins.2003.10.002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验