Suppr超能文献

基于配体的 N-芳基和 N-杂芳基哌嗪α1A-肾上腺素能受体拮抗剂的药效团模型,使用 GALAHAD。

Ligand-based pharmacophore model of N-Aryl and N-Heteroaryl piperazine alpha 1A-adrenoceptors antagonists using GALAHAD.

机构信息

Pharmaceutical Research Center, Guangzhou Medical College, Guangzhou, Guangdong 510182, China.

出版信息

J Mol Graph Model. 2010 Sep;29(2):126-36. doi: 10.1016/j.jmgm.2010.05.002. Epub 2010 May 20.

Abstract

Computer aided drug discovery for selective antagonism effects on alpha(1A) subtypes of G-protein coupled receptors are important in the treatment of benign prostatic hyperplasia (BPH). Ligand-based pharmacophore models of N-Aryl and N-Heteroaryl piperazine alpha(1A)-antagonists were developed using two separate training sets. Pharmacophore models were generated using the flexible align method within the GALAHAD module, implemented in SYBYL8.1 software. The most significant pharmacophore hypothesis, characterized by the conflicting demands of maximizing pharmacophore consensus, maximizing steric consensus, and minimizing energy, consisted of one positive nitrogen center, one donor atom center, two acceptor atom centers, and two hydrophobic groups. The most active compound in each class training set showed a good fit with all features of the pharmacophore proposed. The resulting models also had something in common with the hypothesis using the Catalyst software reported in other publications. These alpha(1A) pharmacophore models could predict compounds well, both in the training set and the test set. The pharmacophore models were also validated by an external dataset using a portion of the ZINC database. A 3D-QSAR model using the pharmacophore model to align the compounds was established in this study. The CoMFA model with the cross-validated q(2) value of 0.735 revealed that the model was valid. Our research provides a valuable tool for designing new therapeutic compounds with desired biological activity.

摘要

计算机辅助药物设计对 G 蛋白偶联受体 alpha(1A)亚型的选择性拮抗作用在治疗良性前列腺增生 (BPH)方面具有重要意义。使用两个独立的训练集开发了 N-芳基和 N-杂芳基哌嗪 alpha(1A)-拮抗剂的基于配体的药效团模型。药效团模型使用 SYBYL8.1 软件中的 GALAHAD 模块中的灵活对齐方法生成。最显著的药效团假说由最大化药效团一致性、最大化立体一致性和最小化能量的冲突要求决定,由一个正氮中心、一个供体原子中心、两个受体原子中心和两个疏水基团组成。每个类训练集中最活跃的化合物与所提出的药效团的所有特征都很好地吻合。所得到的模型也与使用 Catalyst 软件在其他出版物中报道的假说有一些共同点。这些 alpha(1A)药效团模型可以很好地预测训练集和测试集中的化合物。该药效团模型还通过使用 ZINC 数据库的一部分对外部数据集进行了验证。本研究还建立了使用药效团模型对齐化合物的 3D-QSAR 模型。CoMFA 模型的交叉验证 q(2)值为 0.735,表明该模型是有效的。我们的研究为设计具有所需生物活性的新型治疗化合物提供了有价值的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验