Suppr超能文献

浮游动物摄食的危险:伏击型桡足类产生的流体信号。

Danger of zooplankton feeding: the fluid signal generated by ambush-feeding copepods.

机构信息

National Institute of Aquatic Resources, Technical University of Denmark, Kavalergården 6, 2920 Charlottenlund, Denmark.

出版信息

Proc Biol Sci. 2010 Nov 7;277(1698):3229-37. doi: 10.1098/rspb.2010.0629. Epub 2010 Jun 10.

Abstract

Zooplankton feed in any of three ways: they generate a feeding current while hovering, cruise through the water or are ambush feeders. Each mode generates different hydrodynamic disturbances and hence exposes the grazers differently to mechanosensory predators. Ambush feeders sink slowly and therefore perform occasional upward repositioning jumps. We quantified the fluid disturbance generated by repositioning jumps in a millimetre-sized copepod (Re ∼ 40). The kick of the swimming legs generates a viscous vortex ring in the wake; another ring of similar intensity but opposite rotation is formed around the decelerating copepod. A simple analytical model, that of an impulsive point force, properly describes the observed flow field as a function of the momentum of the copepod, including the translation of the vortex and its spatial extension and temporal decay. We show that the time-averaged fluid signal and the consequent predation risk is much less for an ambush-feeding than a cruising or hovering copepod for small individuals, while the reverse is true for individuals larger than about 1 mm. This makes inefficient ambush feeding feasible in small copepods, and is consistent with the observation that ambush-feeding copepods in the ocean are all small, while larger species invariably use hovering or cruising feeding strategies.

摘要

浮游动物有三种摄食方式

悬停时产生摄食流,巡游或伏击式捕食。每种方式都会产生不同的水动力干扰,从而使掠食者以不同的方式暴露于机械感觉掠食者面前。伏击式捕食者会缓慢下沉,因此会偶尔进行向上的复位跳跃。我们量化了毫米大小的桡足类(Re∼40)复位跳跃产生的流体干扰。游泳腿的踢腿在尾迹中产生粘性涡环;在减速桡足类周围形成另一个强度相似但旋转方向相反的涡环。一个简单的分析模型,即脉冲点力模型,能够很好地描述观测到的流场,其函数形式与桡足类的动量有关,包括涡的平移及其空间扩展和时间衰减。我们表明,对于小型个体,伏击式捕食的平均流体信号和由此产生的捕食风险比巡游或悬停的桡足类要小得多,而对于大于约 1 毫米的个体则相反。这使得小型桡足类的低效伏击式捕食成为可能,这与海洋中伏击式捕食的桡足类都是小型的观察结果一致,而较大的物种总是采用悬停或巡游的摄食策略。

相似文献

1
Danger of zooplankton feeding: the fluid signal generated by ambush-feeding copepods.
Proc Biol Sci. 2010 Nov 7;277(1698):3229-37. doi: 10.1098/rspb.2010.0629. Epub 2010 Jun 10.
2
Mechanisms and feasibility of prey capture in ambush-feeding zooplankton.
Proc Natl Acad Sci U S A. 2009 Jul 28;106(30):12394-9. doi: 10.1073/pnas.0903350106. Epub 2009 Jul 21.
3
Flow disturbances generated by feeding and swimming zooplankton.
Proc Natl Acad Sci U S A. 2014 Aug 12;111(32):11738-43. doi: 10.1073/pnas.1405260111. Epub 2014 Jul 28.
4
The fluid dynamics of swimming by jumping in copepods.
J R Soc Interface. 2011 Aug 7;8(61):1090-103. doi: 10.1098/rsif.2010.0481. Epub 2011 Jan 5.
5
Prey detection and prey capture in copepod nauplii.
PLoS One. 2012;7(10):e47906. doi: 10.1371/journal.pone.0047906. Epub 2012 Oct 29.
6
To eat and not be eaten: optimal foraging behaviour in suspension feeding copepods.
J R Soc Interface. 2013 Jan 6;10(78):20120693. doi: 10.1098/rsif.2012.0693. Epub 2012 Nov 8.
7
Interactions between benthic predators and zooplanktonic prey are affected by turbulent waves.
Integr Comp Biol. 2013 Nov;53(5):810-20. doi: 10.1093/icb/ict092. Epub 2013 Aug 12.
8
Optimal swimming strategies in mate-searching pelagic copepods.
Oecologia. 2008 Feb;155(1):179-92. doi: 10.1007/s00442-007-0893-x. Epub 2007 Nov 8.
9
Feeding on dispersed vs. aggregated particles: The effect of zooplankton feeding behavior on vertical flux.
PLoS One. 2017 May 17;12(5):e0177958. doi: 10.1371/journal.pone.0177958. eCollection 2017.
10
Propulsion efficiency and imposed flow fields of a copepod jump.
J Exp Biol. 2011 Feb 1;214(Pt 3):476-86. doi: 10.1242/jeb.049288.

引用本文的文献

1
Hydrodynamics of cruise swimming and turning maneuvers in Euchaeta antarctica.
Sci Rep. 2024 Nov 15;14(1):28217. doi: 10.1038/s41598-024-76439-1.
2
Opportunistic vs selective feeding strategies of zooplankton under changing environmental conditions.
J Plankton Res. 2023 Feb 22;45(2):389-403. doi: 10.1093/plankt/fbad007. eCollection 2023 Mar-Apr.
3
Evolution of Feeding Shapes Swimming Kinematics of Barnacle Naupliar Larvae: A Comparison between Trophic Modes.
Integr Org Biol. 2020 Apr 17;2(1):obaa011. doi: 10.1093/iob/obaa011. eCollection 2020.
4
Role of Inactivity in Chronic Diseases: Evolutionary Insight and Pathophysiological Mechanisms.
Physiol Rev. 2017 Oct 1;97(4):1351-1402. doi: 10.1152/physrev.00019.2016.
5
A tale of the ciliate tail: investigation into the adaptive significance of this sub-cellular structure.
Proc Biol Sci. 2015 Aug 7;282(1812):20150770. doi: 10.1098/rspb.2015.0770.
6
Flow disturbances generated by feeding and swimming zooplankton.
Proc Natl Acad Sci U S A. 2014 Aug 12;111(32):11738-43. doi: 10.1073/pnas.1405260111. Epub 2014 Jul 28.
7
Hydrodynamic trails produced by Daphnia: size and energetics.
PLoS One. 2014 Mar 26;9(3):e92383. doi: 10.1371/journal.pone.0092383. eCollection 2014.
8
The kinematics of swimming and relocation jumps in copepod nauplii.
PLoS One. 2012;7(10):e47486. doi: 10.1371/journal.pone.0047486. Epub 2012 Oct 24.
9
To eat and not be eaten: optimal foraging behaviour in suspension feeding copepods.
J R Soc Interface. 2013 Jan 6;10(78):20120693. doi: 10.1098/rsif.2012.0693. Epub 2012 Nov 8.
10
Using computational and mechanical models to study animal locomotion.
Integr Comp Biol. 2012 Nov;52(5):553-75. doi: 10.1093/icb/ics115. Epub 2012 Sep 16.

本文引用的文献

1
How zooplankton feed: mechanisms, traits and trade-offs.
Biol Rev Camb Philos Soc. 2011 May;86(2):311-39. doi: 10.1111/j.1469-185X.2010.00148.x.
2
Unsteady motion: escape jumps in planktonic copepods, their kinematics and energetics.
J R Soc Interface. 2010 Nov 6;7(52):1591-602. doi: 10.1098/rsif.2010.0176. Epub 2010 May 12.
3
Dynamics of enhanced tracer diffusion in suspensions of swimming eukaryotic microorganisms.
Phys Rev Lett. 2009 Nov 6;103(19):198103. doi: 10.1103/PhysRevLett.103.198103. Epub 2009 Nov 5.
4
Mechanisms and feasibility of prey capture in ambush-feeding zooplankton.
Proc Natl Acad Sci U S A. 2009 Jul 28;106(30):12394-9. doi: 10.1073/pnas.0903350106. Epub 2009 Jul 21.
5
Quantitative analysis of tethered and free-swimming copepodid flow fields.
J Exp Biol. 2007 Jan;210(Pt 2):299-310. doi: 10.1242/jeb.02633.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验