Biodynamics Research Laboratory, Department of Kinesiology, and Center for Biomedical Engineering Systems, University of North Carolina, Charlotte, NC, USA.
J Sport Rehabil. 2010 May;19(2):136-48. doi: 10.1123/jsr.19.2.136.
To investigate the effects of external ankle support (EAS) on lower extremity joint mechanics and vertical ground-reaction forces (VGRF) during drop landings.
A 1 x 3 repeated-measures, crossover design.
Biomechanics research laboratory.
13 male recreationally active basketball players (age 22.3 +/- 2.2 y, height 177.5 +/- 7.5 cm, mass 72.2 +/- 11.4 kg) free from lower extremity pathology for the 12 mo before the study.
Subjects performed a 1-legged drop landing from a standardized height under 3 different ankle-support conditions.
Hip, knee, and ankle angular displacement along with specific temporal (TGRFz1, TGRFz2; s) and spatial (GRFz1, GRFz2; body-weight units [BW]) characteristics of the VGRF vector were measured during a drop landing.
The tape condition (1.08 +/- 0.09 BW) demonstrated less GRFz1 than the control (1.28 +/- 0.16 BW) and semirigid conditions (1.28 +/- 0.21 BW; P < .0001), and GRFz2 was unaffected. For TGRFz1, no-support displayed slower time (0.017 +/- 0.004 s) than the semirigid (0.014 +/- 0.001 s) and tape conditions (0.014 +/- 0.002 s; P < .05). For TGRFz2, no-support displayed slower time (0.054 +/- 0.006 s) than the semirigid (0.050 +/- 0.006 s) and tape conditions (0.045 +/- 0.004 s; P < .05). Semirigid bracing was slower than the tape condition, as well (P < .05). Ankle-joint displacement was less in the tape (34.6 degrees +/- 7.7 degrees) and semirigid (36.8 degrees +/- 9.3 degrees) conditions than in no-support (45.7 degrees +/- 7.3 degrees; P < .05). Knee-joint displacement was larger in the no-support (45.1 degrees +/- 9.0 degrees) than in the semirigid (42.6 degrees +/- 6.8 degrees; P < .05) condition. Tape support (43.8 degrees +/- 8.7 degrees) did not differ from the semirigid condition (P > .05). Hip angular displacement was not affected by EAS (F(2,24) = 1.47, P = .25).
EAS reduces ankle- and knee-joint displacement, which appear to influence the spatial and temporal characteristics of GRFz1 during drop landings.
研究外踝支撑(EAS)对落地时下肢关节力学和垂直地面反作用力(VGRF)的影响。
1 x 3 重复测量,交叉设计。
生物力学研究实验室。
13 名男性业余篮球运动员(年龄 22.3 +/- 2.2 岁,身高 177.5 +/- 7.5 cm,体重 72.2 +/- 11.4 kg),在研究前 12 个月内没有下肢病理。
受试者在 3 种不同的踝部支撑条件下,从标准化高度进行单腿落地。
在落地过程中,测量髋关节、膝关节和踝关节的角位移以及 VGRF 向量的特定时间(TGRFz1、TGRFz2;s)和空间(GRFz1、GRFz2;体重单位 [BW])特征。
与对照(1.28 +/- 0.16 BW)和半刚性条件(1.28 +/- 0.21 BW;P <.0001)相比,胶带条件(1.08 +/- 0.09 BW)的 GRFz1 更小,GRFz2 不受影响。对于 TGRFz1,无支撑的时间(0.017 +/- 0.004 s)比半刚性(0.014 +/- 0.001 s)和胶带条件(0.014 +/- 0.002 s)慢;P <.05)。对于 TGRFz2,无支撑的时间(0.054 +/- 0.006 s)比半刚性(0.050 +/- 0.006 s)和胶带条件(0.045 +/- 0.004 s)慢;P <.05)。半刚性支撑也比胶带条件慢(P <.05)。在胶带(34.6 度 +/- 7.7 度)和半刚性(36.8 度 +/- 9.3 度)条件下,踝关节位移小于无支撑条件(45.7 度 +/- 7.3 度;P <.05)。在无支撑(45.1 度 +/- 9.0 度)条件下,膝关节位移大于半刚性(42.6 度 +/- 6.8 度;P <.05)。胶带支撑(43.8 度 +/- 8.7 度)与半刚性条件无差异(P >.05)。EAS 不影响髋关节角度位移(F(2,24)= 1.47,P =.25)。
EAS 减少踝关节和膝关节的位移,这似乎影响了落地时 GRFz1 的空间和时间特征。