Liu Xinfeng, Nie Qing
Department of Mathematics, University of South Carolina, Columbia, SC 29208.
J Comput Phys. 2010 Aug 10;229(16):5692-5706. doi: 10.1016/j.jcp.2010.04.003.
Implicit integration factor (IIF) method, a class of efficient semi-implicit temporal scheme, was introduced recently for stiff reaction-diffusion equations. To reduce cost of IIF, compact implicit integration factor (cIIF) method was later developed for efficient storage and calculation of exponential matrices associated with the diffusion operators in two and three spatial dimensions for Cartesian coordinates with regular meshes. Unlike IIF, cIIF cannot be directly extended to other curvilinear coordinates, such as polar and spherical coordinate, due to the compact representation for the diffusion terms in cIIF. In this paper, we present a method to generalize cIIF for other curvilinear coordinates through examples of polar and spherical coordinates. The new cIIF method in polar and spherical coordinates has similar computational efficiency and stability properties as the cIIF in Cartesian coordinate. In addition, we present a method for integrating cIIF with adaptive mesh refinement (AMR) to take advantage of the excellent stability condition for cIIF. Because the second order cIIF is unconditionally stable, it allows large time steps for AMR, unlike a typical explicit temporal scheme whose time step is severely restricted by the smallest mesh size in the entire spatial domain. Finally, we apply those methods to simulating a cell signaling system described by a system of stiff reaction-diffusion equations in both two and three spatial dimensions using AMR, curvilinear and Cartesian coordinates. Excellent performance of the new methods is observed.
隐式积分因子(IIF)方法是一类高效的半隐式时间格式,最近被引入用于求解刚性反应扩散方程。为了降低IIF的计算成本,后来又发展了紧致隐式积分因子(cIIF)方法,用于在二维和三维笛卡尔坐标系下具有规则网格的情况下,高效存储和计算与扩散算子相关的指数矩阵。与IIF不同,由于cIIF中扩散项的紧致表示,cIIF不能直接扩展到其他曲线坐标系,如极坐标和球坐标。在本文中,我们通过极坐标和球坐标的例子,提出了一种将cIIF推广到其他曲线坐标系的方法。极坐标和球坐标下的新cIIF方法具有与笛卡尔坐标系下的cIIF相似的计算效率和稳定性。此外,我们还提出了一种将cIIF与自适应网格细化(AMR)相结合的方法,以利用cIIF出色的稳定性条件。由于二阶cIIF是无条件稳定的,它允许在AMR中采用较大的时间步长,这与典型的显式时间格式不同,后者的时间步长受到整个空间域中最小网格尺寸的严格限制。最后,我们将这些方法应用于使用AMR、曲线坐标和笛卡尔坐标模拟二维和三维空间中由刚性反应扩散方程组描述的细胞信号系统。观察到新方法具有出色的性能。