Suppr超能文献

用于复杂区域和自适应网格细化的紧致积分因子方法。

Compact integration factor methods for complex domains and adaptive mesh refinement.

作者信息

Liu Xinfeng, Nie Qing

机构信息

Department of Mathematics, University of South Carolina, Columbia, SC 29208.

出版信息

J Comput Phys. 2010 Aug 10;229(16):5692-5706. doi: 10.1016/j.jcp.2010.04.003.

Abstract

Implicit integration factor (IIF) method, a class of efficient semi-implicit temporal scheme, was introduced recently for stiff reaction-diffusion equations. To reduce cost of IIF, compact implicit integration factor (cIIF) method was later developed for efficient storage and calculation of exponential matrices associated with the diffusion operators in two and three spatial dimensions for Cartesian coordinates with regular meshes. Unlike IIF, cIIF cannot be directly extended to other curvilinear coordinates, such as polar and spherical coordinate, due to the compact representation for the diffusion terms in cIIF. In this paper, we present a method to generalize cIIF for other curvilinear coordinates through examples of polar and spherical coordinates. The new cIIF method in polar and spherical coordinates has similar computational efficiency and stability properties as the cIIF in Cartesian coordinate. In addition, we present a method for integrating cIIF with adaptive mesh refinement (AMR) to take advantage of the excellent stability condition for cIIF. Because the second order cIIF is unconditionally stable, it allows large time steps for AMR, unlike a typical explicit temporal scheme whose time step is severely restricted by the smallest mesh size in the entire spatial domain. Finally, we apply those methods to simulating a cell signaling system described by a system of stiff reaction-diffusion equations in both two and three spatial dimensions using AMR, curvilinear and Cartesian coordinates. Excellent performance of the new methods is observed.

摘要

隐式积分因子(IIF)方法是一类高效的半隐式时间格式,最近被引入用于求解刚性反应扩散方程。为了降低IIF的计算成本,后来又发展了紧致隐式积分因子(cIIF)方法,用于在二维和三维笛卡尔坐标系下具有规则网格的情况下,高效存储和计算与扩散算子相关的指数矩阵。与IIF不同,由于cIIF中扩散项的紧致表示,cIIF不能直接扩展到其他曲线坐标系,如极坐标和球坐标。在本文中,我们通过极坐标和球坐标的例子,提出了一种将cIIF推广到其他曲线坐标系的方法。极坐标和球坐标下的新cIIF方法具有与笛卡尔坐标系下的cIIF相似的计算效率和稳定性。此外,我们还提出了一种将cIIF与自适应网格细化(AMR)相结合的方法,以利用cIIF出色的稳定性条件。由于二阶cIIF是无条件稳定的,它允许在AMR中采用较大的时间步长,这与典型的显式时间格式不同,后者的时间步长受到整个空间域中最小网格尺寸的严格限制。最后,我们将这些方法应用于使用AMR、曲线坐标和笛卡尔坐标模拟二维和三维空间中由刚性反应扩散方程组描述的细胞信号系统。观察到新方法具有出色的性能。

相似文献

1
Compact integration factor methods for complex domains and adaptive mesh refinement.
J Comput Phys. 2010 Aug 10;229(16):5692-5706. doi: 10.1016/j.jcp.2010.04.003.
2
Array-representation Integration Factor Method for High-dimensional Systems.
J Comput Phys. 2014 Feb 1;258. doi: 10.1016/j.jcp.2013.11.002.
3
Operator Splitting Implicit Integration Factor Methods for Stiff Reaction-Diffusion-Advection Systems.
J Comput Phys. 2011 Jul;230(15):5996-6009. doi: 10.1016/j.jcp.2011.04.009.
4
Compact integration factor methods in high spatial dimensions.
J Comput Phys. 2008;227(10):5238-5255. doi: 10.1016/j.jcp.2008.01.050.
5
A HYBRID METHOD FOR STIFF REACTION-DIFFUSION EQUATIONS.
Discrete Continuous Dyn Syst Ser B. 2019 Dec;24(12):6387-6417. doi: 10.3934/dcdsb.2019144.
6
An Integration Factor Method for Stochastic and Stiff Reaction-Diffusion Systems.
J Comput Phys. 2015 Aug 15;295:505-522. doi: 10.1016/j.jcp.2015.04.028.
7
Semi-implicit Integration Factor Methods on Sparse Grids for High-Dimensional Systems.
J Comput Phys. 2015 Jul 1;292:43-55. doi: 10.1016/j.jcp.2015.03.033.
8
Tractography in Curvilinear Coordinates.
Front Neurosci. 2021 Aug 26;15:716538. doi: 10.3389/fnins.2021.716538. eCollection 2021.
10
Stable second-order scheme for integrating the Kuramoto-Sivanshinsky equation in polar coordinates using distributed approximating functionals.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Sep;72(3 Pt 2):036701. doi: 10.1103/PhysRevE.72.036701. Epub 2005 Sep 6.

引用本文的文献

1
A HYBRID METHOD FOR STIFF REACTION-DIFFUSION EQUATIONS.
Discrete Continuous Dyn Syst Ser B. 2019 Dec;24(12):6387-6417. doi: 10.3934/dcdsb.2019144.
2
An Integration Factor Method for Stochastic and Stiff Reaction-Diffusion Systems.
J Comput Phys. 2015 Aug 15;295:505-522. doi: 10.1016/j.jcp.2015.04.028.
3
Semi-implicit Integration Factor Methods on Sparse Grids for High-Dimensional Systems.
J Comput Phys. 2015 Jul 1;292:43-55. doi: 10.1016/j.jcp.2015.03.033.
4
Array-representation Integration Factor Method for High-dimensional Systems.
J Comput Phys. 2014 Feb 1;258. doi: 10.1016/j.jcp.2013.11.002.
5
Operator Splitting Implicit Integration Factor Methods for Stiff Reaction-Diffusion-Advection Systems.
J Comput Phys. 2011 Jul;230(15):5996-6009. doi: 10.1016/j.jcp.2011.04.009.

本文引用的文献

1
Compact integration factor methods in high spatial dimensions.
J Comput Phys. 2008;227(10):5238-5255. doi: 10.1016/j.jcp.2008.01.050.
2
AKAP signalling complexes: focal points in space and time.
Nat Rev Mol Cell Biol. 2004 Dec;5(12):959-70. doi: 10.1038/nrm1527.
3
The molecular scaffold KSR1 regulates the proliferative and oncogenic potential of cells.
Mol Cell Biol. 2004 May;24(10):4407-16. doi: 10.1128/MCB.24.10.4407-4416.2004.
4
Regulation of MAP kinase signaling modules by scaffold proteins in mammals.
Annu Rev Cell Dev Biol. 2003;19:91-118. doi: 10.1146/annurev.cellbio.19.111401.091942.
6
Rewiring MAP kinase pathways using alternative scaffold assembly mechanisms.
Science. 2003 Feb 14;299(5609):1061-4. doi: 10.1126/science.1076979. Epub 2003 Jan 2.
8
A space-time adaptive method for simulating complex cardiac dynamics.
Phys Rev Lett. 2000 Feb 7;84(6):1343-6. doi: 10.1103/PhysRevLett.84.1343.
9
Structural organization of MAP-kinase signaling modules by scaffold proteins in yeast and mammals.
Trends Biochem Sci. 1998 Dec;23(12):481-5. doi: 10.1016/s0968-0004(98)01309-7.
10
IKAP is a scaffold protein of the IkappaB kinase complex.
Nature. 1998 Sep 17;395(6699):292-6. doi: 10.1038/26254.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验