Suppr超能文献

使用回归分析和拓扑建模最优排序法对亚硝胺类化合物致癌风险的定量构效关系建模。

Quantitative structure-activity relationship modelling of the carcinogenic risk of nitroso compounds using regression analysis and the TOPS-MODE approach.

机构信息

Department of Chemistry, Central University of Las Villas, Santa Clara, Villa Clara, Cuba.

出版信息

SAR QSAR Environ Res. 2010 Apr;21(3-4):277-304. doi: 10.1080/10629361003773930.

Abstract

Worldwide, legislative and governmental efforts are focusing on establishing simple screening tools for identifying those chemicals most likely to cause adverse effects without experimentally testing all chemicals of regulatory concern. This is because even the most basic biological testing of compounds of concern, apart from requiring a huge number of test animals, would be neither resource nor time effective. Thus, alternative approaches such as the one proposed here, quantitative structure-activity relationship (QSAR) modelling, are increasingly being used for identifying the potential health hazards and subsequent regulation of new industrial chemicals. This paper follows up on our earlier work that demonstrated the use of the TOPological Substructural MOlecular DEsign (TOPS-MODE) approach to QSAR modelling for predictions of the carcinogenic potency of nitroso compounds. The data set comprises 56 nitroso compounds which have been bio-assayed in female rats and administered by the oral water route. The QSAR model was able to account for about 81% of the variance in the experimental activity and exhibited good cross-validation statistics. A reasonable interpretation of the TOPS-MODE descriptors was achieved by means of bond contributions, which in turn afforded the recognition of structural alerts (SAs) regarding carcinogenicity. A comparison of the SAs obtained from different data sets showed that experimental factors, such as the sex and the oral administration route, exert a major influence on the carcinogenicity of nitroso compounds. The present and previous QSAR models combined together provide a reliable tool for estimating the carcinogenic potency of yet untested nitroso compounds and they should allow the identification of SAs, which can be used as the basis of prediction systems for the rodent carcinogenicity of these compounds.

摘要

在全球范围内,立法和政府部门都在努力建立简单的筛选工具,以便在无需对所有受监管的化学物质进行实验测试的情况下,识别出那些最有可能产生不良影响的化学物质。这是因为,即使是对受关注的化合物进行最基本的生物学测试,除了需要大量的实验动物外,既没有资源也没有时间效率。因此,正在越来越多地采用替代方法,如这里提出的定量构效关系(QSAR)建模,来识别新工业化学品的潜在健康危害和随后的监管。本文是对我们早期工作的跟进,该工作展示了使用拓扑结构分子设计(TOPS-MODE)方法进行 QSAR 建模,以预测亚硝胺化合物的致癌潜力。该数据集包含 56 种亚硝胺化合物,这些化合物已在雌性大鼠中进行了生物测定,并通过口服水途径给予。QSAR 模型能够解释实验活性的约 81%的变化,并表现出良好的交叉验证统计数据。通过键贡献对 TOPS-MODE 描述符进行了合理的解释,这反过来又识别了致癌性的结构警示(SA)。对来自不同数据集的 SA 进行比较表明,实验因素,如性别和口服给药途径,对亚硝胺化合物的致癌性有很大影响。目前和以前的 QSAR 模型结合在一起,为估计未经测试的亚硝胺化合物的致癌潜力提供了可靠的工具,并且它们应该能够识别出可以用作这些化合物的啮齿动物致癌性预测系统基础的 SA。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验