Unité Sous Contrat Bartonella, INRA, Maisons-Alfort, France.
PLoS Pathog. 2010 Jun 10;6(6):e1000946. doi: 10.1371/journal.ppat.1000946.
Bacterial pathogens typically infect only a limited range of hosts; however, the genetic mechanisms governing host-specificity are poorly understood. The alpha-proteobacterial genus Bartonella comprises 21 species that cause host-specific intraerythrocytic bacteremia as hallmark of infection in their respective mammalian reservoirs, including the human-specific pathogens Bartonella quintana and Bartonella bacilliformis that cause trench fever and Oroya fever, respectively. Here, we have identified bacterial factors that mediate host-specific erythrocyte colonization in the mammalian reservoirs. Using mouse-specific Bartonella birtlesii, human-specific Bartonella quintana, cat-specific Bartonella henselae and rat-specific Bartonella tribocorum, we established in vitro adhesion and invasion assays with isolated erythrocytes that fully reproduce the host-specificity of erythrocyte infection as observed in vivo. By signature-tagged mutagenesis of B. birtlesii and mutant selection in a mouse infection model we identified mutants impaired in establishing intraerythrocytic bacteremia. Among 45 abacteremic mutants, five failed to adhere to and invade mouse erythrocytes in vitro. The corresponding genes encode components of the type IV secretion system (T4SS) Trw, demonstrating that this virulence factor laterally acquired by the Bartonella lineage is directly involved in adherence to erythrocytes. Strikingly, ectopic expression of Trw of rat-specific B. tribocorum in cat-specific B. henselae or human-specific B. quintana expanded their host range for erythrocyte infection to rat, demonstrating that Trw mediates host-specific erythrocyte infection. A molecular evolutionary analysis of the trw locus further indicated that the variable, surface-located TrwL and TrwJ might represent the T4SS components that determine host-specificity of erythrocyte parasitism. In conclusion, we show that the laterally acquired Trw T4SS diversified in the Bartonella lineage to facilitate host-restricted adhesion to erythrocytes in a wide range of mammals.
细菌病原体通常只感染有限范围的宿主;然而,调控宿主特异性的遗传机制尚未得到充分理解。α变形菌属的巴尔通体包含 21 个种,它们在各自的哺乳动物宿主体内引起宿主特异性的红细胞内菌血症,这是感染的标志,包括人类特异性病原体贝氏柯克斯体和五日热巴尔通体,分别引起战壕热和奥罗亚热。在这里,我们鉴定了介导哺乳动物宿主体内细菌定殖的宿主特异性因子。我们使用鼠特异性巴尔通体、人特异性贝氏柯克斯体、猫特异性汉赛巴尔通体和鼠特异性巴尔通体,建立了用分离红细胞进行的体外黏附和入侵测定,完全重现了体内观察到的红细胞感染的宿主特异性。通过鼠感染模型中的特征性标记诱变和突变体选择,我们鉴定了在建立红细胞内菌血症方面存在缺陷的突变体。在 45 个无细菌血症突变体中,有 5 个突变体在体外不能黏附和入侵鼠红细胞。相应的基因编码 IV 型分泌系统(T4SS)Trw 的组成部分,表明该毒力因子是巴尔通体系横向获得的,直接参与红细胞的黏附。引人注目的是,大鼠特异性巴尔通体的 Trw 在猫特异性汉赛巴尔通体或人特异性贝氏柯克斯体中的异位表达扩大了它们对红细胞感染的宿主范围至大鼠,表明 Trw 介导宿主特异性的红细胞感染。trw 基因座的分子进化分析进一步表明,可变的、表面定位的 TrwL 和 TrwJ 可能代表决定红细胞寄生宿主特异性的 T4SS 成分。总之,我们表明,横向获得的 Trw T4SS 在巴尔通体系中多样化,以促进在广泛的哺乳动物中宿主限制的黏附到红细胞。