Guerra M, Cabral G, Cuacos M, González-García M, González-Sánchez M, Vega J, Puertas M J
Laboratório de Citogenética Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Brazil.
Cytogenet Genome Res. 2010 Jul;129(1-3):82-96. doi: 10.1159/000314289. Epub 2010 Jun 11.
The centromere appears as a single constriction at mitotic metaphase in most eukaryotic chromosomes. Holokinetic chromosomes are the exception to this rule because they do not show any centromeric constrictions. Holokinetic chromosomes are usually forgotten in most reviews about centromeres, despite their presence in a number of animal and plant species. They are generally linked to very intriguing and unusual mechanisms of mitosis and meiosis. Holokinetic chromosomes differ from monocentric chromosomes not only in the extension of the kinetochore plate, but also in many other peculiar karyological features, which could be understood as the 'holokinetic syndrome' that is reviewed in detail. Together with holokinetic chromosomes we review neocentromeric activity, a similarly intriguing case of regions able to pull chromosomes towards the poles without showing the main components reported to be essential to centromeric function. A neocentromere is a chromosomal region different from the true centromere in structure, DNA sequence and location, but is able to lead chromosomes to the cell poles in special circumstances. Neocentromeres have been reported in plants and animals showing different features. Both in humans and Drosophila, neocentric activity appears in somatic cells with defective chromosomes lacking a functional centromere. In most cases in plants, neocentromeres appear in chromosomes which have normal centromeres, but are active only during meiosis. Because of examples such as spontaneous or induced neocentromeres and holokinetic chromosomes, it is becoming less surprising that different structures and DNA sequences of centromeres appear in evolution.
在大多数真核生物染色体的有丝分裂中期,着丝粒表现为单一缢痕。全着丝粒染色体是这一规律的例外,因为它们不显示任何着丝粒缢痕。尽管全着丝粒染色体存在于许多动植物物种中,但在大多数关于着丝粒的综述中通常被忽略。它们通常与非常有趣且不寻常的有丝分裂和减数分裂机制相关。全着丝粒染色体与单着丝粒染色体的不同之处不仅在于动粒板的延伸,还在于许多其他独特的核型特征,这些特征可被理解为详细综述的“全着丝粒综合征”。我们将全着丝粒染色体与新着丝粒活性一起进行综述,新着丝粒活性是一个类似有趣的案例,即一些区域能够将染色体拉向两极,却不显示据报道对着丝粒功能至关重要的主要成分。新着丝粒是一个在结构、DNA序列和位置上不同于真正着丝粒的染色体区域,但在特殊情况下能够引导染色体移向细胞两极。在动植物中均有报道新着丝粒具有不同特征。在人类和果蝇中,新着丝粒活性出现在染色体有缺陷且缺乏功能着丝粒的体细胞中。在植物的大多数情况下,新着丝粒出现在具有正常着丝粒但仅在减数分裂期间有活性的染色体中。由于自发或诱导产生的新着丝粒以及全着丝粒染色体等例子,着丝粒在进化中出现不同结构和DNA序列也就变得不那么令人惊讶了。