School of Chemistry, North Haugh, University of St Andrews, St Andrews, Fife KY16 9ST, UK.
Magn Reson Chem. 2010 Dec;48 Suppl 1:S61-8. doi: 10.1002/mrc.2624.
93Nb chemical shifts of NbX6 (X = Cl, F, CO), NbXCl4 (X = O, S), Nb2(OMe)10, Cp2Nb(κ2-BH4), (CpNb)2(µ-B2H6)2, CpNb(CO)4, and Cp2NbH3 are computed at the GIAO (gauge-including atomic orbitals)-, BPW91- and B3LYP-, and CSGT (continuous set of gauge transformations)-CAM-B3LYP, -ωB97, and -ωB97X levels, using BP86-optimized or experimental (X-ray) geometries. Experimental chemical shifts are best reproduced at the GIAO-BPW91 level when δ(93Nb) values of inorganic complexes are referenced directly relative to NbCl6 and those of organometallic species are first calculated relative to Nb(CO)6. An inadvertent error in the reported δ(93Nb) values of cyclopentadiene borane complexes (H. Brunner et al., J. Organomet. Chem.1992, 436, 313) is corrected. Trends in the observed 93Nb NMR linewidths for anionic niobates Nb(CO)5, Nb(CO)5H, and Nb(CO)5(NH3) are rationalized in terms of computed electric field gradients at the metal.
NbX6(X = Cl、F、CO)、NbXCl4(X = O、S)、Nb2(OMe)10、Cp2Nb(κ2-BH4)、(CpNb)2(µ-B2H6)2、CpNb(CO)4 和 Cp2NbH3 的 93Nb 化学位移在 GIAO(规范包含原子轨道)、BPW91 和 B3LYP 以及 CSGT(连续规范变换)-CAM-B3LYP、-ωB97 和 -ωB97X 水平下进行了计算,使用了 BP86 优化或实验(X 射线)几何形状。当无机配合物的 δ(93Nb) 值直接相对于 NbCl6 进行参考,并且有机金属物种的 δ(93Nb) 值首先相对于 Nb(CO)6 进行计算时,实验化学位移在 GIAO-BPW91 水平下得到了最佳的重现。对(H. Brunner 等人,J. Organomet. Chem.1992, 436, 313)报道的环戊二烯硼烷配合物的 δ(93Nb) 值中的一个无意错误进行了修正。根据计算出的金属处的电场梯度,对阴离子铌酸盐 Nb(CO)5、Nb(CO)5H 和 Nb(CO)5(NH3) 的观察到的 93Nb NMR 线宽趋势进行了合理化。