Center for Bioelectronics and Biosensors, the Biodesign Institute, and Department of Electrical Engineering, Arizona State University, Tempe, Arizona 85287-5801, USA.
ACS Nano. 2010 Jul 27;4(7):3823-30. doi: 10.1021/nn100470s.
We study the charge transport properties and electron-phonon interactions in single molecule junctions, each consisting of an octanedithiol molecule covalently bound to two electrodes. Conductance measurements over a wide temperature range establish tunneling as the dominant charge transport process. Inelastic electron tunneling spectroscopy performed on individual molecular junctions provides a chemical signature of the molecule and allows electron-phonon interaction induced changes in the conductance to be explored. By fitting the conductance changes in the molecular junction using a simple model for inelastic transport, it is possible to estimate the phonon damping rates in the molecule. Finally, changes in the inelastic spectra are examined in relation to conductance switching events in the junction to demonstrate how changes in the configuration of the molecule or contact geometry can affect the conductance of the molecular junction.
我们研究了由一个八硫醇分子共价连接到两个电极组成的单分子结中的电荷输运性质和电子-声子相互作用。在很宽的温度范围内进行的电导测量确定了隧道作为主要的电荷输运过程。对单个分子结进行的非弹性电子隧道谱学测量提供了分子的化学特征,并允许探索电导中电子-声子相互作用引起的变化。通过使用非弹性输运的简单模型拟合分子结中的电导变化,可以估计分子中的声子阻尼率。最后,我们研究了非弹性谱的变化与结中电导开关事件的关系,以证明分子构象或接触几何的变化如何影响分子结的电导。