Suppr超能文献

从嗜堿金属球菌 QYMF 中鉴定一种新型 ArsA ATP 酶复合物的生化特性。

Biochemical characterization of a novel ArsA ATPase complex from Alkaliphilus metalliredigens QYMF.

机构信息

Department of Biochemistry and Molecular Biology, Wayne State University, School of Medicine, Detroit, MI 48201, USA.

出版信息

FEBS Lett. 2010 Jul 16;584(14):3089-94. doi: 10.1016/j.febslet.2010.05.044. Epub 2010 May 27.

Abstract

The two putative ars operons in Alkaliphilus metalliredigens QYMF are distinctive in that the arsA gene is split in halves, amarsA1 and amarsA2, and, acr3 but not an arsB gene coexists with arsA. Heterologous expression of one of the A. metalliredigensars operons (ars1) conferred arsenite but not antimonite resistance to DeltaarsEscherichia coli. Only the co-expressed AmArsA1 and AmArsA2 displayed arsenite or antimonite stimulated ATPase activity. The results show that AmArsA1-AmArsA2 interaction is needed to form the functional ArsA ATPase. This novel AmArsA1-AmArsA2 complex may provide insight in how it participates with Acr3 in arsenite detoxification.

摘要

在 Alkaliphilus metalliredigens QYMF 中,两个假定的 ars 操纵子的特点是 arsA 基因被分成两半,即 amarsA1 和 amarsA2,并且 acr3 与 arsA 共存,但没有 arsB 基因。一个 Alkaliphilus metalliredigens ars 操纵子(ars1)的异源表达赋予了 DeltaarsEscherichia coli 对亚砷酸盐而不是锑酸盐的抗性。只有共表达的 AmArsA1 和 AmArsA2 显示出对亚砷酸盐或锑酸盐刺激的 ATP 酶活性。结果表明,AmArsA1-AmArsA2 相互作用是形成功能性 ArsA ATP 酶所必需的。这种新型的 AmArsA1-AmArsA2 复合物可能为了解它如何与 Acr3 一起参与亚砷酸盐解毒提供了线索。

相似文献

1
Biochemical characterization of a novel ArsA ATPase complex from Alkaliphilus metalliredigens QYMF.
FEBS Lett. 2010 Jul 16;584(14):3089-94. doi: 10.1016/j.febslet.2010.05.044. Epub 2010 May 27.
5
Regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid pI258.
J Bacteriol. 1992 Jun;174(11):3684-94. doi: 10.1128/jb.174.11.3684-3694.1992.
7
Dual mode of energy coupling by the oxyanion-translocating ArsB protein.
J Bacteriol. 1995 Jan;177(2):385-9. doi: 10.1128/jb.177.2.385-389.1995.
9
Interaction of the catalytic and the membrane subunits of an oxyanion-translocating ATPase.
Arch Biochem Biophys. 1994 Jun;311(2):418-24. doi: 10.1006/abbi.1994.1256.
10
Plasmid-encoded resistance to arsenic and antimony.
Plasmid. 1992 Jan;27(1):29-40. doi: 10.1016/0147-619x(92)90004-t.

引用本文的文献

1
Comparative population genomic analyses of transporters within the Asgard archaeal superphylum.
PLoS One. 2021 Mar 26;16(3):e0247806. doi: 10.1371/journal.pone.0247806. eCollection 2021.
2
Identification of Resistance Genes and Response to Arsenic in BCP1.
Front Microbiol. 2019 May 7;10:888. doi: 10.3389/fmicb.2019.00888. eCollection 2019.
4
Expression of arsenic resistance genes in the obligate anaerobe Bacteroides vulgatus ATCC 8482, a gut microbiome bacterium.
Anaerobe. 2016 Jun;39:117-23. doi: 10.1016/j.anaerobe.2016.03.012. Epub 2016 Mar 31.
5
Identification of antimony- and arsenic-oxidizing bacteria associated with antimony mine tailing.
Microbes Environ. 2013;28(2):257-63. doi: 10.1264/jsme2.me12217. Epub 2013 May 11.
6
Efflux permease CgAcr3-1 of Corynebacterium glutamicum is an arsenite-specific antiporter.
J Biol Chem. 2012 Jan 2;287(1):723-735. doi: 10.1074/jbc.M111.263335. Epub 2011 Nov 18.
7
The ArsD As(III) metallochaperone.
Biometals. 2011 Jun;24(3):391-9. doi: 10.1007/s10534-010-9398-x. Epub 2010 Dec 25.
8
Functional Promiscuity of Homologues of the Bacterial ArsA ATPases.
Int J Microbiol. 2010;2010:187373. doi: 10.1155/2010/187373. Epub 2010 Oct 20.

本文引用的文献

1
Properties of arsenite efflux permeases (Acr3) from Alkaliphilus metalliredigens and Corynebacterium glutamicum.
J Biol Chem. 2009 Jul 24;284(30):19887-95. doi: 10.1074/jbc.M109.011882. Epub 2009 Jun 3.
2
The bile/arsenite/riboflavin transporter (BART) superfamily.
FEBS J. 2007 Feb;274(3):612-29. doi: 10.1111/j.1742-4658.2006.05627.x.
3
Diversity of arsenite transporter genes from arsenic-resistant soil bacteria.
Res Microbiol. 2007 Mar;158(2):128-37. doi: 10.1016/j.resmic.2006.11.006. Epub 2006 Dec 22.
4
An arsenic metallochaperone for an arsenic detoxification pump.
Proc Natl Acad Sci U S A. 2006 Oct 17;103(42):15617-22. doi: 10.1073/pnas.0603974103. Epub 2006 Oct 9.
5
Cys-113 and Cys-422 form a high affinity metalloid binding site in the ArsA ATPase.
J Biol Chem. 2006 Apr 14;281(15):9925-34. doi: 10.1074/jbc.M600125200. Epub 2006 Feb 8.
6
As(III) and Sb(III) uptake by GlpF and efflux by ArsB in Escherichia coli.
J Biol Chem. 2004 Apr 30;279(18):18334-41. doi: 10.1074/jbc.M400037200. Epub 2004 Feb 16.
7
Biochemistry of arsenic detoxification.
FEBS Lett. 2002 Oct 2;529(1):86-92. doi: 10.1016/s0014-5793(02)03186-1.
8
Structure of the ArsA ATPase: the catalytic subunit of a heavy metal resistance pump.
EMBO J. 2000 Sep 1;19(17):4838-45. doi: 10.1093/emboj/19.17.4838.
9
Pathways of As(III) detoxification in Saccharomyces cerevisiae.
Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):5001-6. doi: 10.1073/pnas.96.9.5001.
10
Arsenical pumps in prokaryotes and eukaryotes.
Methods Enzymol. 1998;292:82-97. doi: 10.1016/s0076-6879(98)92009-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验