Suppr超能文献

利用 NMR 和小角 X 射线散射技术快速测定大型 RNA 及其复合物的全球结构。

Rapid global structure determination of large RNA and RNA complexes using NMR and small-angle X-ray scattering.

机构信息

Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.

出版信息

Methods. 2010 Oct;52(2):180-91. doi: 10.1016/j.ymeth.2010.06.009. Epub 2010 Jun 8.

Abstract

Among the greatest advances in biology today are the discoveries of various roles played by RNA in biological processes. However, despite significant advances in RNA structure determination using X-ray crystallography [1] and solution NMR [2-4], the number of bona fide RNA structures is very limited, in comparison with the growing number of known functional RNAs. This is because of great difficulty in growing crystals or/and obtaining phase information, and severe size constraints on structure determination by solution NMR spectroscopy. Clearly, there is an acute need for new methodologies for RNA structure determination. The prevailing approach for structure determination of RNA in solution is a "bottom-up" approach that was basically transplanted from the approach used for determining protein structures, despite vast differences in both structural features and chemical compositions between these two types of biomacromolecules. In this chapter, we describe a new method, which has been reported recently, for rapid global structure determination of RNAs using solution-based NMR spectroscopy and small-angle X-ray scattering. The method treats duplexes as major building blocks of RNA structures. By determining the global orientations of the duplexes and the overall shape, the global structure of an RNA can be constructed and further regularized using Xplor-NIH. The utility of the method was demonstrated in global structure determination of two RNAs, a 71-nt and 102-nt RNAs with an estimated backbone RMSD ∼3.0Å. The global structure opens door to high-resolution structure determination in solution.

摘要

在当今生物学领域的最大进展中,人们发现了 RNA 在生物过程中所扮演的各种角色。然而,尽管利用 X 射线晶体学[1]和溶液 NMR[2-4]在确定 RNA 结构方面取得了重大进展,但与越来越多已知功能的 RNA 相比,真正的 RNA 结构数量非常有限。这是因为晶体生长或/和获得相信息存在很大困难,并且溶液 NMR 光谱学在确定结构时受到严重的尺寸限制。显然,迫切需要新的 RNA 结构确定方法。在溶液中确定 RNA 结构的主要方法是一种“自下而上”的方法,该方法基本上是从用于确定蛋白质结构的方法移植而来的,尽管这两种生物大分子在结构特征和化学组成方面存在巨大差异。在本章中,我们描述了一种新方法,该方法最近已被报道,用于使用基于溶液的 NMR 光谱学和小角 X 射线散射快速确定 RNA 的整体结构。该方法将双链体视为 RNA 结构的主要构建块。通过确定双链体的全局取向和整体形状,可以构建 RNA 的全局结构,并使用 Xplor-NIH 对其进行进一步正则化。该方法的实用性已在两个 RNA(一个 71nt 和一个 102nt RNA)的全局结构确定中得到了证明,其估计的骨架 RMSD 约为 3.0Å。全局结构为在溶液中进行高分辨率结构确定打开了大门。

相似文献

1
Rapid global structure determination of large RNA and RNA complexes using NMR and small-angle X-ray scattering.
Methods. 2010 Oct;52(2):180-91. doi: 10.1016/j.ymeth.2010.06.009. Epub 2010 Jun 8.
2
A method for helical RNA global structure determination in solution using small-angle x-ray scattering and NMR measurements.
J Mol Biol. 2009 Oct 30;393(3):717-34. doi: 10.1016/j.jmb.2009.08.001. Epub 2009 Aug 8.
3
Advanced approaches for elucidating structures of large RNAs using NMR spectroscopy and complementary methods.
Methods. 2020 Nov 1;183:93-107. doi: 10.1016/j.ymeth.2020.01.009. Epub 2020 Jan 20.
4
Using small angle solution scattering data in Xplor-NIH structure calculations.
Prog Nucl Magn Reson Spectrosc. 2014 Jul;80:1-11. doi: 10.1016/j.pnmrs.2014.03.001. Epub 2014 Apr 3.
5
Hybrid Applications of Solution Scattering to Aid Structural Biology.
Adv Exp Med Biol. 2017;1009:215-227. doi: 10.1007/978-981-10-6038-0_13.
6
Combining NMR and small angle X-ray and neutron scattering in the structural analysis of a ternary protein-RNA complex.
J Biomol NMR. 2013 May;56(1):17-30. doi: 10.1007/s10858-013-9719-9. Epub 2013 Mar 3.
7
Advances in the determination of nucleic acid conformational ensembles.
Annu Rev Phys Chem. 2014;65:293-316. doi: 10.1146/annurev-physchem-040412-110059. Epub 2013 Dec 16.
8
Small-angle X-ray scattering: a bridge between RNA secondary structures and three-dimensional topological structures.
Curr Opin Struct Biol. 2015 Feb;30:147-160. doi: 10.1016/j.sbi.2015.02.010. Epub 2015 Mar 10.
9
Nucleic acid structure characterization by small angle X-ray scattering (SAXS).
Curr Protoc Nucleic Acid Chem. 2012 Dec;Chapter 7:Unit7.18. doi: 10.1002/0471142700.nc0718s51.
10
A structure refinement protocol combining NMR residual dipolar couplings and small angle scattering restraints.
J Biomol NMR. 2008 Aug;41(4):199-208. doi: 10.1007/s10858-008-9258-y. Epub 2008 Aug 1.

引用本文的文献

1
Biological Magnetic Resonance Data Bank.
Nucleic Acids Res. 2023 Jan 6;51(D1):D368-D376. doi: 10.1093/nar/gkac1050.
2
NMR Studies of Retroviral Genome Packaging.
Viruses. 2020 Sep 30;12(10):1115. doi: 10.3390/v12101115.
3
A Mn-sensing riboswitch activates expression of a Mn2+/Ca2+ ATPase transporter in Streptococcus.
Nucleic Acids Res. 2019 Jul 26;47(13):6885-6899. doi: 10.1093/nar/gkz494.
4
Long-Range RNA Structural Information via a Paramagnetically Tagged Reporter Protein.
J Am Chem Soc. 2019 Jan 30;141(4):1430-1434. doi: 10.1021/jacs.8b11384. Epub 2019 Jan 22.
5
Incorporation of isotopic, fluorescent, and heavy-atom-modified nucleotides into RNAs by position-selective labeling of RNA.
Nat Protoc. 2018 May;13(5):987-1005. doi: 10.1038/nprot.2018.002. Epub 2018 Apr 12.
6
Structure of the 30 kDa HIV-1 RNA Dimerization Signal by a Hybrid Cryo-EM, NMR, and Molecular Dynamics Approach.
Structure. 2018 Mar 6;26(3):490-498.e3. doi: 10.1016/j.str.2018.01.001. Epub 2018 Feb 2.
7
Structure modeling of RNA using sparse NMR constraints.
Nucleic Acids Res. 2017 Dec 15;45(22):12638-12647. doi: 10.1093/nar/gkx1058.
8
Analysis of RNA structure using small-angle X-ray scattering.
Methods. 2017 Jan 15;113:46-55. doi: 10.1016/j.ymeth.2016.10.008. Epub 2016 Oct 21.
9
Applications of PLOR in labeling large RNAs at specific sites.
Methods. 2016 Jul 1;103:4-10. doi: 10.1016/j.ymeth.2016.03.014. Epub 2016 Mar 23.

本文引用的文献

1
Solution structure of the cap-independent translational enhancer and ribosome-binding element in the 3' UTR of turnip crinkle virus.
Proc Natl Acad Sci U S A. 2010 Jan 26;107(4):1385-90. doi: 10.1073/pnas.0908140107. Epub 2010 Jan 7.
3
To localize or not to localize: mRNA fate is in 3'UTR ends.
Trends Cell Biol. 2009 Sep;19(9):465-74. doi: 10.1016/j.tcb.2009.06.001. Epub 2009 Aug 26.
4
A method for helical RNA global structure determination in solution using small-angle x-ray scattering and NMR measurements.
J Mol Biol. 2009 Oct 30;393(3):717-34. doi: 10.1016/j.jmb.2009.08.001. Epub 2009 Aug 8.
5
Probabilistic interaction network of evidence algorithm and its application to complete labeling of peak lists from protein NMR spectroscopy.
PLoS Comput Biol. 2009 Mar;5(3):e1000307. doi: 10.1371/journal.pcbi.1000307. Epub 2009 Mar 13.
6
Structure and functional studies of the CS domain of the essential H/ACA ribonucleoparticle assembly protein SHQ1.
J Biol Chem. 2009 Jan 16;284(3):1906-16. doi: 10.1074/jbc.M807337200. Epub 2008 Nov 19.
7
Solution structure and dynamics of the wild-type pseudoknot of human telomerase RNA.
J Mol Biol. 2008 Dec 31;384(5):1249-61. doi: 10.1016/j.jmb.2008.10.005. Epub 2008 Oct 11.
8
The 3' proximal translational enhancer of Turnip crinkle virus binds to 60S ribosomal subunits.
RNA. 2008 Nov;14(11):2379-93. doi: 10.1261/rna.1227808. Epub 2008 Sep 29.
9
Solution structure of tRNAVal from refinement of homology model against residual dipolar coupling and SAXS data.
J Biomol NMR. 2008 Oct;42(2):99-109. doi: 10.1007/s10858-008-9267-x. Epub 2008 Sep 12.
10
The annotation of RNA motifs.
Comp Funct Genomics. 2002;3(6):518-24. doi: 10.1002/cfg.213.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验