Suppr超能文献

Radiation-induced attenuation in polarization maintaining fibers: low dose rate response, stress, and materials effects.

作者信息

Friebele E J, Brambani L A, Gingerich M E, Hickey S J, Onstott J R

出版信息

Appl Opt. 1989 Dec 1;28(23):5138-43. doi: 10.1364/AO.28.005138.

Abstract

The loss induced in polarization-maintaining (PM) fibers by low dose rate [<0.01 Gy/h, where 1 Gy = 100 rads(Si)] radiation exposure has been found to vary from <0.4 to approximately 6 dB/km-10 Gy, depending on the wavelength of measurement and the fiber. Correlations have been established between low dose rate response and the "permanent" induced loss determined by fitting the recovery of the induced loss following high dose rate exposure to nth-order kinetics. Using this technique, both 0.85- and 1.3-microm PM fibers have been found which show virtually no permanent incremental loss and would therefore appear to be resistant to low dose rate radiation environments. The asymmetric stress inherent in PM fibers has been shown to reduce the permanent induced loss, while the recovery of the radiation-induced attenuation was found to be enhanced in fibers with Ge-F-doped silica clads.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验