Department of Mathematics, University of Leicester, University Road Leicester, LE1 7RH, United Kingdom.
Int J Neural Syst. 2010 Jun;20(3):193-207. doi: 10.1142/S0129065710002358.
We consider the problem of how to recover the state and parameter values of typical model neurons, such as Hindmarsh-Rose, FitzHugh-Nagumo, Morris-Lecar, from in-vitro measurements of membrane potentials. In control theory, in terms of observer design, model neurons qualify as locally observable. However, unlike most models traditionally addressed in control theory, no parameter-independent diffeomorphism exists, such that the original model equations can be transformed into adaptive canonic observer form. For a large class of model neurons, however, state and parameter reconstruction is possible nevertheless. We propose a method which, subject to mild conditions on the richness of the measured signal, allows model parameters and state variables to be reconstructed up to an equivalence class.
我们研究如何从典型模型神经元(如 Hindmarsh-Rose、FitzHugh-Nagumo、Morris-Lecar 等)的体外膜电位测量中恢复其状态和参数值。在控制理论中,就观测器设计而言,模型神经元具有局部可观测性。然而,与传统控制理论中处理的大多数模型不同,不存在参数独立的微分同胚,使得原始模型方程可以转化为自适应正则观测器形式。然而,对于一大类模型神经元,状态和参数重构仍然是可能的。我们提出了一种方法,只要测量信号的丰富度满足一定条件,就可以将模型参数和状态变量重构到等价类。