Suppr超能文献

高压氧和常压低氧复氧增加 CA1 海马神经元的兴奋性并激活氧诱导增强。

Hyperbaric hyperoxia and normobaric reoxygenation increase excitability and activate oxygen-induced potentiation in CA1 hippocampal neurons.

机构信息

Center for Integrative Brain Research, Seattle Children’s Research, Seattle, Washington, USA.

出版信息

J Appl Physiol (1985). 2010 Sep;109(3):804-19. doi: 10.1152/japplphysiol.91429.2008. Epub 2010 Jun 17.

Abstract

Breathing hyperbaric oxygen (HBO) is common practice in hyperbaric and diving medicine. The benefits of breathing HBO, however, are limited by the risk of central nervous system O2 toxicity, which presents as seizures. We tested the hypothesis that excitability increases in CA1 neurons of the rat hippocampal slice (400 microm) over a continuum of hyperoxia that spans normobaric and hyperbaric pressures. Amplitude changes of the orthodromic population spike were used to assess neuronal O2 sensitivity before, during, and following exposure to 0, 0.6, 0.95 (control), 2.84, and 4.54 atmospheres absolute (ATA) O2. Polarographic O2 electrodes were used to measure tissue slice PO2 (PtO2). In 0.95 ATA O2, core PtO2 at 200 microm deep was 115±16 Torr (mean±SE). Increasing O2 to 2.84 and 4.54 ATA increased core PtO2 to 1,222±77 and 2,037±157 Torr, respectively. HBO increased the orthodromic population spike amplitude and usually induced hyperexcitability (i.e., secondary population spikes) and, in addition, a long-lasting potentiation of the orthodromic population spike that we have termed "oxygen-induced potentiation" (OxIP). Exposure to 0.60 ATA O2 and hypoxia (0.00 ATA) decreased core PtO2 to 84±6 and 20±4 Torr, respectively, and abolished the orthodromic response. Reoxygenation from 0.0 or 0.6 ATA O2, however, usually produced a response similar to that of HBO: hyperexcitability and activation of OxIP. We conclude that CA1 neurons exhibit increased excitability and neural plasticity over a broad range of PtO2, which can be activated by a single, hyperoxic stimulus. We postulate that transient acute hyperoxia stimulus, whether caused by breathing HBO or reoxygenation following hypoxia (e.g., disordered breathing), is a powerful stimulant for orthodromic activity and neural plasticity in the CA1 hippocampus.

摘要

在高压和潜水医学中,呼吸高压氧(HBO)是常见的做法。然而,呼吸 HBO 的益处受到中枢神经系统 O2 毒性风险的限制,这种毒性表现为癫痫发作。我们测试了一个假设,即在跨越常压和高压压力的连续高氧范围内,大鼠海马切片(400μm)中的 CA1 神经元兴奋性增加。在暴露于 0、0.6、0.95(对照)、2.84 和 4.54 个大气压(ATA)O2 之前、期间和之后,使用顺行群体锋电位的幅度变化来评估神经元对 O2 的敏感性。使用极谱 O2 电极测量组织切片的 PO2(PtO2)。在 0.95 ATA O2 中,200μm 深处的核心 PtO2 为 115±16 Torr(平均值±SE)。将 O2 增加到 2.84 和 4.54 ATA 分别将核心 PtO2 增加到 1222±77 和 2037±157 Torr。HBO 增加了顺行群体锋电位的幅度,通常会引起过度兴奋(即继发性群体锋电位),此外,还会引起顺行群体锋电位的长时间增强,我们称之为“氧诱导增强”(OxIP)。暴露于 0.60 ATA O2 和缺氧(0.00 ATA)分别将核心 PtO2 降低至 84±6 和 20±4 Torr,并消除了顺行反应。然而,从 0.0 或 0.6 ATA O2 复氧通常会产生类似于 HBO 的反应:过度兴奋和 OxIP 的激活。我们得出结论,CA1 神经元在广泛的 PtO2 范围内表现出兴奋性增加和神经可塑性增强,这可以通过单个高氧刺激来激活。我们假设,无论是由呼吸 HBO 引起的短暂急性高氧刺激还是缺氧后复氧(例如,呼吸紊乱)引起的短暂急性高氧刺激,都是 CA1 海马体中顺行活动和神经可塑性的强大刺激。

相似文献

1
Hyperbaric hyperoxia and normobaric reoxygenation increase excitability and activate oxygen-induced potentiation in CA1 hippocampal neurons.
J Appl Physiol (1985). 2010 Sep;109(3):804-19. doi: 10.1152/japplphysiol.91429.2008. Epub 2010 Jun 17.
3
A potential early physiological marker for CNS oxygen toxicity: hyperoxic hyperpnea precedes seizure in unanesthetized rats breathing hyperbaric oxygen.
J Appl Physiol (1985). 2013 Apr;114(8):1009-20. doi: 10.1152/japplphysiol.01326.2012. Epub 2013 Feb 21.
4
Hyperbaric hyperoxia induces a neuromuscular hyperexcitability: assessment of a reduced response in elite oxygen divers.
Clin Physiol Funct Imaging. 2003 May;23(3):149-54. doi: 10.1046/j.1475-097x.2003.00486.x.
5
Hyperbaric oxygen depolarizes solitary complex neurons in tissue slices of rat medulla oblongata.
Adv Exp Med Biol. 2000;475:465-76. doi: 10.1007/0-306-46825-5_45.
6
Oxygen measurements in brain stem slices exposed to normobaric hyperoxia and hyperbaric oxygen.
J Appl Physiol (1985). 2001 May;90(5):1887-99. doi: 10.1152/jappl.2001.90.5.1887.
8
Microvascular oxygen partial pressure during hyperbaric oxygen in diabetic rat skeletal muscle.
Am J Physiol Regul Integr Comp Physiol. 2015 Dec 15;309(12):R1512-20. doi: 10.1152/ajpregu.00380.2015. Epub 2015 Oct 14.
9
Alteration of blood glucose levels in the rat following exposure to hyperbaric oxygen.
J Appl Physiol (1985). 2015 Sep 1;119(5):463-7. doi: 10.1152/japplphysiol.00154.2015. Epub 2015 Jul 16.

引用本文的文献

1
Optimizing hyperbaric oxygen therapy for PTSD-The importance of dose and duration for sustained benefits.
Front Neurol. 2024 Sep 26;15:1447742. doi: 10.3389/fneur.2024.1447742. eCollection 2024.
2
Short-term hyperoxia-induced functional and morphological changes in rat hippocampus.
Front Cell Neurosci. 2024 Apr 15;18:1376577. doi: 10.3389/fncel.2024.1376577. eCollection 2024.
4
The O-sensitive brain stem, hyperoxic hyperventilation, and CNS oxygen toxicity.
Front Physiol. 2022 Jul 26;13:921470. doi: 10.3389/fphys.2022.921470. eCollection 2022.
6
Impact of Hyperbaric Oxygen Therapy on Cognitive Functions: a Systematic Review.
Neuropsychol Rev. 2022 Mar;32(1):99-126. doi: 10.1007/s11065-021-09500-9. Epub 2021 Apr 13.
7
Exogenous ketone salts inhibit superoxide production in the rat caudal solitary complex during exposure to normobaric and hyperbaric hyperoxia.
J Appl Physiol (1985). 2021 Jun 1;130(6):1936-1954. doi: 10.1152/japplphysiol.01071.2020. Epub 2021 Mar 4.
8
CNS function and dysfunction during exposure to hyperbaric oxygen in operational and clinical settings.
Redox Biol. 2019 Oct;27:101159. doi: 10.1016/j.redox.2019.101159. Epub 2019 Mar 9.
9
Advances in cellular and integrative control of oxygen homeostasis within the central nervous system.
J Physiol. 2018 Aug;596(15):3043-3065. doi: 10.1113/JP275890. Epub 2018 Jun 28.

本文引用的文献

2
Acute hyperoxia increases lipid peroxidation and induces plasma membrane blebbing in human U87 glioblastoma cells.
Neuroscience. 2009 Mar 31;159(3):1011-22. doi: 10.1016/j.neuroscience.2009.01.062. Epub 2009 Feb 3.
3
Maintaining network activity in submerged hippocampal slices: importance of oxygen supply.
Eur J Neurosci. 2009 Jan;29(2):319-27. doi: 10.1111/j.1460-9568.2008.06577.x.
4
Short oxygen prebreathe periods reduce or prevent severe decompression sickness in a 70-kg swine saturation model.
J Appl Physiol (1985). 2009 Apr;106(4):1459-63. doi: 10.1152/japplphysiol.91058.2008. Epub 2009 Jan 29.
5
Effects of hyperbaric gases on membrane nanostructure and function in neurons.
J Appl Physiol (1985). 2009 Mar;106(3):996-1003. doi: 10.1152/japplphysiol.91070.2008. Epub 2008 Sep 25.
6
Electrophysiology of cerebral ischemia.
Neuropharmacology. 2008 Sep;55(3):319-33. doi: 10.1016/j.neuropharm.2008.01.002. Epub 2008 Jan 14.
7
Differential modulation of neural network and pacemaker activity underlying eupnea and sigh-breathing activities.
J Neurophysiol. 2008 May;99(5):2114-25. doi: 10.1152/jn.01192.2007. Epub 2008 Feb 20.
8
Oxygen or carbogen breathing before simulated submarine escape.
J Appl Physiol (1985). 2008 Jan;104(1):50-6. doi: 10.1152/japplphysiol.00465.2007. Epub 2007 Nov 1.
9
Superoxide (*O2- ) production in CA1 neurons of rat hippocampal slices exposed to graded levels of oxygen.
J Neurophysiol. 2007 Aug;98(2):1030-41. doi: 10.1152/jn.01003.2006. Epub 2007 Jun 6.
10
High pressure modulation of NMDA receptor dependent excitability.
Eur J Neurosci. 2007 Apr;25(7):2045-52. doi: 10.1111/j.1460-9568.2007.05479.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验