Center for Integrative Brain Research, Seattle Children’s Research, Seattle, Washington, USA.
J Appl Physiol (1985). 2010 Sep;109(3):804-19. doi: 10.1152/japplphysiol.91429.2008. Epub 2010 Jun 17.
Breathing hyperbaric oxygen (HBO) is common practice in hyperbaric and diving medicine. The benefits of breathing HBO, however, are limited by the risk of central nervous system O2 toxicity, which presents as seizures. We tested the hypothesis that excitability increases in CA1 neurons of the rat hippocampal slice (400 microm) over a continuum of hyperoxia that spans normobaric and hyperbaric pressures. Amplitude changes of the orthodromic population spike were used to assess neuronal O2 sensitivity before, during, and following exposure to 0, 0.6, 0.95 (control), 2.84, and 4.54 atmospheres absolute (ATA) O2. Polarographic O2 electrodes were used to measure tissue slice PO2 (PtO2). In 0.95 ATA O2, core PtO2 at 200 microm deep was 115±16 Torr (mean±SE). Increasing O2 to 2.84 and 4.54 ATA increased core PtO2 to 1,222±77 and 2,037±157 Torr, respectively. HBO increased the orthodromic population spike amplitude and usually induced hyperexcitability (i.e., secondary population spikes) and, in addition, a long-lasting potentiation of the orthodromic population spike that we have termed "oxygen-induced potentiation" (OxIP). Exposure to 0.60 ATA O2 and hypoxia (0.00 ATA) decreased core PtO2 to 84±6 and 20±4 Torr, respectively, and abolished the orthodromic response. Reoxygenation from 0.0 or 0.6 ATA O2, however, usually produced a response similar to that of HBO: hyperexcitability and activation of OxIP. We conclude that CA1 neurons exhibit increased excitability and neural plasticity over a broad range of PtO2, which can be activated by a single, hyperoxic stimulus. We postulate that transient acute hyperoxia stimulus, whether caused by breathing HBO or reoxygenation following hypoxia (e.g., disordered breathing), is a powerful stimulant for orthodromic activity and neural plasticity in the CA1 hippocampus.
在高压和潜水医学中,呼吸高压氧(HBO)是常见的做法。然而,呼吸 HBO 的益处受到中枢神经系统 O2 毒性风险的限制,这种毒性表现为癫痫发作。我们测试了一个假设,即在跨越常压和高压压力的连续高氧范围内,大鼠海马切片(400μm)中的 CA1 神经元兴奋性增加。在暴露于 0、0.6、0.95(对照)、2.84 和 4.54 个大气压(ATA)O2 之前、期间和之后,使用顺行群体锋电位的幅度变化来评估神经元对 O2 的敏感性。使用极谱 O2 电极测量组织切片的 PO2(PtO2)。在 0.95 ATA O2 中,200μm 深处的核心 PtO2 为 115±16 Torr(平均值±SE)。将 O2 增加到 2.84 和 4.54 ATA 分别将核心 PtO2 增加到 1222±77 和 2037±157 Torr。HBO 增加了顺行群体锋电位的幅度,通常会引起过度兴奋(即继发性群体锋电位),此外,还会引起顺行群体锋电位的长时间增强,我们称之为“氧诱导增强”(OxIP)。暴露于 0.60 ATA O2 和缺氧(0.00 ATA)分别将核心 PtO2 降低至 84±6 和 20±4 Torr,并消除了顺行反应。然而,从 0.0 或 0.6 ATA O2 复氧通常会产生类似于 HBO 的反应:过度兴奋和 OxIP 的激活。我们得出结论,CA1 神经元在广泛的 PtO2 范围内表现出兴奋性增加和神经可塑性增强,这可以通过单个高氧刺激来激活。我们假设,无论是由呼吸 HBO 引起的短暂急性高氧刺激还是缺氧后复氧(例如,呼吸紊乱)引起的短暂急性高氧刺激,都是 CA1 海马体中顺行活动和神经可塑性的强大刺激。