Suppr超能文献

鸣禽前脑对音调序列的神经适应:模式、决定因素,以及与听觉流形成的关系。

Neural adaptation to tone sequences in the songbird forebrain: patterns, determinants, and relation to the build-up of auditory streaming.

机构信息

Department of Ecology, Evolution, and Behavior, University of Minnesota, 100 Ecology, 1987 Upper Buford Circle, St. Paul, MN 55108, USA.

出版信息

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2010 Aug;196(8):543-57. doi: 10.1007/s00359-010-0542-4. Epub 2010 Jun 19.

Abstract

Neural responses to tones in the mammalian primary auditory cortex (A1) exhibit adaptation over the course of several seconds. Important questions remain about the taxonomic distribution of multi-second adaptation and its possible roles in hearing. It has been hypothesized that neural adaptation could explain the gradual "build-up" of auditory stream segregation. We investigated the influence of several stimulus-related factors on neural adaptation in the avian homologue of mammalian A1 (field L2) in starlings (Sturnus vulgaris). We presented awake birds with sequences of repeated triplets of two interleaved tones (ABA-ABA-...) in which we varied the frequency separation between the A and B tones (DeltaF), the stimulus onset asynchrony (time from tone onset to onset within a triplet), and tone duration. We found that stimulus onset asynchrony generally had larger effects on adaptation compared with DeltaF and tone duration over the parameter range tested. Using a simple model, we show how time-dependent changes in neural responses can be transformed into neurometric functions that make testable predictions about the dependence of the build-up of stream segregation on various spectral and temporal stimulus properties.

摘要

哺乳动物初级听觉皮层 (A1) 对音调的神经反应在数秒的过程中表现出适应。关于多秒适应的分类分布及其在听力中的可能作用,仍有重要问题需要研究。有人假设,神经适应可以解释听觉流分离的逐渐“建立”。我们研究了几种与刺激相关的因素对星雀 (Sturnus vulgaris) 中哺乳动物 A1(场 L2)同源物的神经适应的影响。我们在清醒的鸟类中呈现了重复的三音组序列(ABA-ABA-...),其中我们改变了 A 和 B 音之间的频率间隔(DeltaF)、刺激起始异步(从音开始到三音内开始的时间)和音持续时间。我们发现,在测试的参数范围内,与 DeltaF 和音持续时间相比,刺激起始异步通常对适应的影响更大。使用一个简单的模型,我们展示了如何将神经反应的时变变化转化为神经测量函数,这些函数可以对流分离的建立对各种光谱和时间刺激特性的依赖做出可测试的预测。

相似文献

1
Neural adaptation to tone sequences in the songbird forebrain: patterns, determinants, and relation to the build-up of auditory streaming.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2010 Aug;196(8):543-57. doi: 10.1007/s00359-010-0542-4. Epub 2010 Jun 19.
2
Primitive auditory stream segregation: a neurophysiological study in the songbird forebrain.
J Neurophysiol. 2004 Aug;92(2):1088-104. doi: 10.1152/jn.00884.2003. Epub 2004 Mar 24.
4
Effects of attention on neuroelectric correlates of auditory stream segregation.
J Cogn Neurosci. 2006 Jan;18(1):1-13. doi: 10.1162/089892906775250021.
5
Neural correlates of auditory stream segregation in primary auditory cortex of the awake monkey.
Hear Res. 2001 Jan;151(1-2):167-187. doi: 10.1016/s0378-5955(00)00224-0.
6
Stream segregation in the anesthetized auditory cortex.
Hear Res. 2015 Oct;328:48-58. doi: 10.1016/j.heares.2015.07.004. Epub 2015 Jul 9.
7
A Crucial Test of the Population Separation Model of Auditory Stream Segregation in Macaque Primary Auditory Cortex.
J Neurosci. 2017 Nov 1;37(44):10645-10655. doi: 10.1523/JNEUROSCI.0792-17.2017. Epub 2017 Sep 27.
8
Stimulus phase locking of cortical oscillation for auditory stream segregation in rats.
PLoS One. 2013 Dec 20;8(12):e83544. doi: 10.1371/journal.pone.0083544. eCollection 2013.
10
Adaptation reveals multiple levels of representation in auditory stream segregation.
J Exp Psychol Hum Percept Perform. 2009 Aug;35(4):1232-44. doi: 10.1037/a0012741.

引用本文的文献

1
Attention capture in birds performing an auditory streaming task.
PLoS One. 2020 Jun 26;15(6):e0235420. doi: 10.1371/journal.pone.0235420. eCollection 2020.
2
Invariant neural responses for sensory categories revealed by the time-varying information for communication calls.
PLoS Comput Biol. 2019 Sep 26;15(9):e1006698. doi: 10.1371/journal.pcbi.1006698. eCollection 2019 Sep.
4
Neuronal Correlates of Auditory Streaming in Monkey Auditory Cortex for Tone Sequences without Spectral Differences.
Front Integr Neurosci. 2018 Jan 30;12:4. doi: 10.3389/fnint.2018.00004. eCollection 2018.
6
Animal models for auditory streaming.
Philos Trans R Soc Lond B Biol Sci. 2017 Feb 19;372(1714). doi: 10.1098/rstb.2016.0112. Epub 2017 Jan 2.
7
Emergence of Spatial Stream Segregation in the Ascending Auditory Pathway.
J Neurosci. 2015 Dec 9;35(49):16199-212. doi: 10.1523/JNEUROSCI.3116-15.2015.
8
Membrane potential dynamics of populations of cortical neurons during auditory streaming.
J Neurophysiol. 2015 Oct;114(4):2418-30. doi: 10.1152/jn.00545.2015. Epub 2015 Aug 12.
9
Stream segregation in the anesthetized auditory cortex.
Hear Res. 2015 Oct;328:48-58. doi: 10.1016/j.heares.2015.07.004. Epub 2015 Jul 9.
10
An alternating renewal process describes the buildup of perceptual segregation.
Front Comput Neurosci. 2015 Jan 7;8:166. doi: 10.3389/fncom.2014.00166. eCollection 2014.

本文引用的文献

1
Correlating stimulus-specific adaptation of cortical neurons and local field potentials in the awake rat.
J Neurosci. 2009 Nov 4;29(44):13837-49. doi: 10.1523/JNEUROSCI.3475-09.2009.
2
Involvement of the thalamocortical loop in the spontaneous switching of percepts in auditory streaming.
J Neurosci. 2009 Oct 7;29(40):12695-701. doi: 10.1523/JNEUROSCI.1549-09.2009.
3
Long-lasting context dependence constrains neural encoding models in rodent auditory cortex.
J Neurophysiol. 2009 Nov;102(5):2638-56. doi: 10.1152/jn.00577.2009. Epub 2009 Aug 12.
4
Effects of prior stimulus and prior perception on neural correlates of auditory stream segregation.
Psychophysiology. 2009 Nov;46(6):1208-15. doi: 10.1111/j.1469-8986.2009.00870.x. Epub 2009 Aug 7.
5
Stimulus-specific adaptation occurs in the auditory thalamus.
J Neurosci. 2009 Jun 3;29(22):7359-63. doi: 10.1523/JNEUROSCI.0793-09.2009.
6
Stimulus-specific adaptation in the inferior colliculus of the anesthetized rat.
J Neurosci. 2009 Apr 29;29(17):5483-93. doi: 10.1523/JNEUROSCI.4153-08.2009.
7
Auditory streaming of amplitude-modulated sounds in the songbird forebrain.
J Neurophysiol. 2009 Jun;101(6):3212-25. doi: 10.1152/jn.91333.2008. Epub 2009 Apr 8.
8
Temporal coherence in the perceptual organization and cortical representation of auditory scenes.
Neuron. 2009 Jan 29;61(2):317-29. doi: 10.1016/j.neuron.2008.12.005.
9
The cocktail party problem: what is it? How can it be solved? And why should animal behaviorists study it?
J Comp Psychol. 2008 Aug;122(3):235-51. doi: 10.1037/0735-7036.122.3.235.
10
Temporal scales of auditory objects underlying birdsong vocal recognition.
J Acoust Soc Am. 2008 Aug;124(2):1350-9. doi: 10.1121/1.2945705.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验