Suppr超能文献

人体虱及其主要内共生体的基因组序列为永久性寄生生活方式提供了线索。

Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle.

机构信息

J Craig Venter Institute, Rockville, MD 20850, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 Jul 6;107(27):12168-73. doi: 10.1073/pnas.1003379107. Epub 2010 Jun 21.

Abstract

As an obligatory parasite of humans, the body louse (Pediculus humanus humanus) is an important vector for human diseases, including epidemic typhus, relapsing fever, and trench fever. Here, we present genome sequences of the body louse and its primary bacterial endosymbiont Candidatus Riesia pediculicola. The body louse has the smallest known insect genome, spanning 108 Mb. Despite its status as an obligate parasite, it retains a remarkably complete basal insect repertoire of 10,773 protein-coding genes and 57 microRNAs. Representing hemimetabolous insects, the genome of the body louse thus provides a reference for studies of holometabolous insects. Compared with other insect genomes, the body louse genome contains significantly fewer genes associated with environmental sensing and response, including odorant and gustatory receptors and detoxifying enzymes. The unique architecture of the 18 minicircular mitochondrial chromosomes of the body louse may be linked to the loss of the gene encoding the mitochondrial single-stranded DNA binding protein. The genome of the obligatory louse endosymbiont Candidatus Riesia pediculicola encodes less than 600 genes on a short, linear chromosome and a circular plasmid. The plasmid harbors a unique arrangement of genes required for the synthesis of pantothenate, an essential vitamin deficient in the louse diet. The human body louse, its primary endosymbiont, and the bacterial pathogens that it vectors all possess genomes reduced in size compared with their free-living close relatives. Thus, the body louse genome project offers unique information and tools to use in advancing understanding of coevolution among vectors, symbionts, and pathogens.

摘要

体虱(Pediculus humanus humanus)作为人类的一种专性寄生虫,是包括流行性斑疹伤寒、回归热和战壕热在内的人类疾病的重要媒介。在这里,我们呈现了体虱及其主要细菌内共生菌 Candidatus Riesia pediculicola 的基因组序列。体虱拥有已知昆虫中最小的基因组,大小为 108Mb。尽管它是一种专性寄生虫,但它保留了一个非常完整的基础昆虫基因库,包含 10773 个编码蛋白质的基因和 57 个 microRNAs。作为半变态昆虫的代表,体虱的基因组为全变态昆虫的研究提供了参考。与其他昆虫基因组相比,体虱基因组中与环境感应和响应相关的基因明显较少,包括气味和味觉受体以及解毒酶。体虱 18 条微小的环形线粒体染色体的独特结构可能与编码线粒体单链 DNA 结合蛋白的基因缺失有关。专性虱内共生菌 Candidatus Riesia pediculicola 的基因组在一条短的线性染色体和一个环形质粒上编码了不到 600 个基因。质粒上携带有合成泛酸(一种虱类饮食中缺乏的必需维生素)所需的独特基因排列。人体虱、其主要内共生菌以及它传播的细菌病原体的基因组与自由生活的近亲相比都有所缩小。因此,体虱基因组项目提供了独特的信息和工具,用于推进对媒介、共生菌和病原体之间协同进化的理解。

相似文献

1
Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle.
Proc Natl Acad Sci U S A. 2010 Jul 6;107(27):12168-73. doi: 10.1073/pnas.1003379107. Epub 2010 Jun 21.
2
Sequencing of a new target genome: the Pediculus humanus humanus (Phthiraptera: Pediculidae) genome project.
J Med Entomol. 2006 Nov;43(6):1103-11. doi: 10.1603/0022-2585(2006)43[1103:soantg]2.0.co;2.
4
Utilization of the human louse genome to study insecticide resistance and innate immune response.
Pestic Biochem Physiol. 2015 May;120:125-32. doi: 10.1016/j.pestbp.2014.11.008. Epub 2014 Nov 20.
5
Primates, Lice and Bacteria: Speciation and Genome Evolution in the Symbionts of Hominid Lice.
Mol Biol Evol. 2017 Jul 1;34(7):1743-1757. doi: 10.1093/molbev/msx117.
6
Evolutionary relationships of "Candidatus Riesia spp.," endosymbiotic enterobacteriaceae living within hematophagous primate lice.
Appl Environ Microbiol. 2007 Mar;73(5):1659-64. doi: 10.1128/AEM.01877-06. Epub 2007 Jan 12.
8
Body lice and head lice (Anoplura: Pediculidae) have the smallest genomes of any hemimetabolous insect reported to date.
J Med Entomol. 2007 Nov;44(6):1009-12. doi: 10.1603/0022-2585(2007)44[1009:blahla]2.0.co;2.
10
Where Are We With Human Lice? A Review of the Current State of Knowledge.
Front Cell Infect Microbiol. 2020 Jan 21;9:474. doi: 10.3389/fcimb.2019.00474. eCollection 2019.

引用本文的文献

1
An insight into the salivary gland content of the human body louse, Pediculus humanus.
Sci Rep. 2025 May 26;15(1):18322. doi: 10.1038/s41598-025-01412-5.
4
Telomere DNA in the insect order Dermaptera and the first evidence for the non-canonical telomeric motif TTCGG in Arthropoda.
Comp Cytogenet. 2025 Feb 7;19:13-18. doi: 10.3897/compcytogen.19.142613. eCollection 2025.
7
Gene expansion in the hawkmoth drives evolution of food-associated odorant receptors.
iScience. 2024 Nov 4;27(12):111317. doi: 10.1016/j.isci.2024.111317. eCollection 2024 Dec 20.
8
Rapid evolution of mitochondrion-related genes in haplodiploid arthropods.
BMC Biol. 2024 Oct 10;22(1):229. doi: 10.1186/s12915-024-02027-4.

本文引用的文献

1
Genome sequence of the pea aphid Acyrthosiphon pisum.
PLoS Biol. 2010 Feb 23;8(2):e1000313. doi: 10.1371/journal.pbio.1000313.
2
Biochemistry. CO2mmon sense.
Science. 2010 Jan 15;327(5963):275-6. doi: 10.1126/science.1186022.
3
Plasmid transfer systems in the rhizobia.
Can J Microbiol. 2009 Aug;55(8):917-27. doi: 10.1139/w09-056.
4
Molecular evolution of the major chemosensory gene families in insects.
Heredity (Edinb). 2009 Sep;103(3):208-16. doi: 10.1038/hdy.2009.55. Epub 2009 May 13.
6
Mutational meltdown in primary endosymbionts: selection limits Muller's ratchet.
PLoS One. 2009;4(3):e4969. doi: 10.1371/journal.pone.0004969. Epub 2009 Mar 23.
8
Multigene analysis of phylogenetic relationships and divergence times of primate sucking lice (Phthiraptera: Anoplura).
Mol Phylogenet Evol. 2009 Feb;50(2):376-90. doi: 10.1016/j.ympev.2008.10.023. Epub 2008 Nov 6.
9
miROrtho: computational survey of microRNA genes.
Nucleic Acids Res. 2009 Jan;37(Database issue):D111-7. doi: 10.1093/nar/gkn707. Epub 2008 Oct 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验