Suppr超能文献

肿胀和紧致聚合物的扭绞和打结之间的相互作用。

Interplay between writhe and knotting for swollen and compact polymers.

机构信息

Instituut voor Theoretische Fysica, K. U. Leuven, Celestijnenlaan 200D 3001, Belgium.

出版信息

J Chem Phys. 2009 Oct 21;131(15):154902. doi: 10.1063/1.3244643.

Abstract

The role of the topology and its relation with the geometry of biopolymers under different physical conditions is a nontrivial and interesting problem. Aiming at understanding this issue for a related simpler system, we use Monte Carlo methods to investigate the interplay between writhe and knotting of ring polymers in good and poor solvents. The model that we consider is interacting self-avoiding polygons on the simple cubic lattice. For polygons with fixed knot type, we find a writhe distribution whose average depends on the knot type but is insensitive to the length N of the polygon and to solvent conditions. This "topological contribution" to the writhe distribution has a value that is consistent with that of ideal knots. The standard deviation of the writhe increases approximately as square root(N) in both regimes, and this constitutes a geometrical contribution to the writhe. If the sum over all knot types is considered, the scaling of the standard deviation changes, for compact polygons, to approximately N(0.6). We argue that this difference between the two regimes can be ascribed to the topological contribution to the writhe that, for compact chains, overwhelms the geometrical one, thanks to the presence of a large population of complex knots at relatively small values of N. For polygons with fixed writhe, we find that the knot distribution depends on the chosen writhe, with the occurrence of achiral knots being considerably suppressed for large writhe. In general, the occurrence of a given knot thus depends on a nontrivial interplay between writhe, chain length, and solvent conditions.

摘要

在不同物理条件下,生物聚合物的拓扑结构及其与几何形状的关系是一个复杂而有趣的问题。为了理解相关更简单体系中的这个问题,我们使用蒙特卡罗方法研究了在良溶剂和不良溶剂中环聚合物的纽结和缠绕之间的相互作用。我们考虑的模型是简单立方晶格上相互作用的自回避多边形。对于具有固定纽结类型的多边形,我们发现了一种缠绕分布,其平均值取决于纽结类型,但对多边形的长度 N 和溶剂条件不敏感。这种缠绕分布的“拓扑贡献”具有与理想纽结一致的值。在两种情况下,缠绕的标准偏差都大约按 N 的平方根增加,这构成了缠绕的几何贡献。如果考虑所有纽结类型的总和,则标准偏差的标度在紧凑多边形的情况下发生变化,大约为 N(0.6)。我们认为,这两种情况之间的差异可以归因于缠绕的拓扑贡献,对于紧凑链,由于在相对较小的 N 值处存在大量复杂纽结,因此这种拓扑贡献会超过几何贡献。对于具有固定缠绕的多边形,我们发现纽结分布取决于所选的缠绕,对于大缠绕,非手性纽结的出现会受到极大抑制。一般来说,给定纽结的出现取决于缠绕、链长和溶剂条件之间的复杂相互作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验