Suppr超能文献

单纯疱疹病毒 1 型 UL20 蛋白和糖蛋白 K(gK)的氨基末端与 gB 发生物理相互作用。

The herpes simplex virus type 1 UL20 protein and the amino terminus of glycoprotein K (gK) physically interact with gB.

机构信息

Division of Biotechnology and Molecular Medicine, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana 70803, USA.

出版信息

J Virol. 2010 Sep;84(17):8596-606. doi: 10.1128/JVI.00298-10. Epub 2010 Jun 23.

Abstract

Herpes simplex virus type 1 (HSV-1) glycoprotein K (gK) and the UL20 protein (UL20p) are strictly required for virus-induced cell fusion, and mutations within either the gK or UL20 gene cause extensive cell fusion (syncytium formation). We have shown that gK forms a functional protein complex with UL20p, which is required for all gK and UL20p-associated functions in the HSV-1 life cycle. Recently, we showed that the amino-terminal 82 amino acids (aa) of gK (gKa) were required for the expression of the syncytial phenotype of the mutant virus gBDelta28 lacking the carboxyl-terminal 28 amino acids of gB (V. N. Chouljenko, A. V. Iyer, S. Chowdhury, D. V. Chouljenko, and K. G. Kousoulas, J. Virol. 83:12301-12313, 2009). This work suggested that the amino terminus of gK may directly or indirectly interact with gB and/or other viral glycoproteins. Two-way coimmunoprecipitation experiments revealed that UL20p interacted with gB in infected cells. Furthermore, the gKa peptide was coimmunoprecipitated with gB but not gD. Three recombinant baculoviruses were constructed, expressing the amino-terminal 82 aa of gKa together with either the extracellular portion of gB (30 to 748 aa), gD (1 to 340 aa), or gH (1 to 792 aa), respectively. Coimmunoprecipitation experiments revealed that gKa physically interacted with the extracellular portions of gB and gH but not gD. Three additional recombinant baculoviruses expressing gKa and truncated gBs encompassing aa 30 to 154, 30 to 364, and 30 to 500 were constructed. Coimmunoprecipitation experiments showed that gKa physically interacted with all three truncated gBs. Computer-assisted prediction of possible gKa binding sites on gB suggested that gKa may interact predominantly with gB domain I (E. E. Heldwein, H. Lou, F. C. Bender, G. H. Cohen, R. J. Eisenberg, and S. C. Harrison, Science 313:217-220, 2006). These results imply that the gK/UL20p protein complex modulates the fusogenic properties of gB and gH via direct physical interactions.

摘要

单纯疱疹病毒 1 型(HSV-1)糖蛋白 K(gK)和 UL20 蛋白(UL20p)严格要求病毒诱导的细胞融合,并且 gK 或 UL20 基因内的突变导致广泛的细胞融合(合胞体形成)。我们已经表明,gK 与 UL20p 形成功能蛋白复合物,这是 HSV-1 生命周期中 gK 和 UL20p 相关功能所必需的。最近,我们表明 gK 的氨基末端 82 个氨基酸(aa)(gKa)是表达缺乏 gB 羧基末端 28 个氨基酸的突变病毒 gBDelta28 的合胞表型所必需的(V. N. Chouljenko、A. V. Iyer、S. Chowdhury、D. V. Chouljenko 和 K. G. Kousoulas,J. Virol. 83:12301-12313,2009)。这项工作表明,gK 的氨基末端可能直接或间接地与 gB 和/或其他病毒糖蛋白相互作用。双向免疫沉淀实验表明,UL20p 在感染细胞中与 gB 相互作用。此外,gKa 肽与 gB 共免疫沉淀,但不与 gD 共免疫沉淀。构建了三个重组杆状病毒,分别表达 gKa 的氨基末端 82 个 aa 与 gB 的胞外部分(30 至 748 aa)、gD(1 至 340 aa)或 gH(1 至 792 aa)。免疫沉淀实验表明,gKa 与 gB 和 gH 的胞外部分发生物理相互作用,但与 gD 不发生相互作用。构建了另外三个表达 gKa 和截短 gB 的重组杆状病毒,截短 gB 包含 aa 30 至 154、30 至 364 和 30 至 500。免疫沉淀实验表明,gKa 与所有三个截短的 gB 发生物理相互作用。计算机辅助预测 gB 上 gKa 结合位点的可能位置表明,gKa 可能主要与 gB 结构域 I 相互作用(E. E. Heldwein、H. Lou、F. C. Bender、G. H. Cohen、R. J. Eisenberg 和 S. C. Harrison,Science 313:217-220,2006)。这些结果表明,gK/UL20p 蛋白复合物通过直接物理相互作用调节 gB 和 gH 的融合特性。

相似文献

1
10
Functional and physical interactions of the herpes simplex virus type 1 UL20 membrane protein with glycoprotein K.
J Virol. 2008 Jul;82(13):6310-23. doi: 10.1128/JVI.00147-08. Epub 2008 Apr 23.

引用本文的文献

1
Virus-Induced Cell Fusion and Syncytia Formation.
Results Probl Cell Differ. 2024;71:283-318. doi: 10.1007/978-3-031-37936-9_14.
4
Herpesvirus Nuclear Egress across the Outer Nuclear Membrane.
Viruses. 2021 Nov 24;13(12):2356. doi: 10.3390/v13122356.
6
The Structures and Functions of VZV Glycoproteins.
Curr Top Microbiol Immunol. 2023;438:25-58. doi: 10.1007/82_2021_243.
8
Rational Design of Live-Attenuated Vaccines against Herpes Simplex Viruses.
Viruses. 2021 Aug 18;13(8):1637. doi: 10.3390/v13081637.
9

本文引用的文献

3
Herpes simplex virus gD forms distinct complexes with fusion executors gB and gH/gL in part through the C-terminal profusion domain.
J Biol Chem. 2009 Jun 26;284(26):17370-82. doi: 10.1074/jbc.M109.005728. Epub 2009 Apr 22.
4
Protein structure prediction on the Web: a case study using the Phyre server.
Nat Protoc. 2009;4(3):363-71. doi: 10.1038/nprot.2009.2.
5
Functional and physical interactions of the herpes simplex virus type 1 UL20 membrane protein with glycoprotein K.
J Virol. 2008 Jul;82(13):6310-23. doi: 10.1128/JVI.00147-08. Epub 2008 Apr 23.
6
PILRalpha is a herpes simplex virus-1 entry coreceptor that associates with glycoprotein B.
Cell. 2008 Mar 21;132(6):935-44. doi: 10.1016/j.cell.2008.01.043.
7
Bimolecular complementation reveals that glycoproteins gB and gH/gL of herpes simplex virus interact with each other during cell fusion.
Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18718-23. doi: 10.1073/pnas.0707452104. Epub 2007 Nov 14.
10
ZRANK: reranking protein docking predictions with an optimized energy function.
Proteins. 2007 Jun 1;67(4):1078-86. doi: 10.1002/prot.21373.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验